Convert UCLALES-SALSA output to DEPHY format#

Code to read the LES output files and write to DEPHY format (NetCDF)

Modified from “convert_comble_dephy_forcing_to_DHARMA_LES_and_ModelE3_SCM_forcing.ipynb”

Import libraries#

import xarray as xr
import pandas as pd
import numpy as np
import os
import datetime as dt
from netCDF4 import Dataset

Specify directory locations#

Model name: UCLALES-SALSA

Microphysics:

a) SB (i.e., without SALSA): diagnostic cloud (saturation adjustment + CDNC as an input) and 2M (number and mass) rain-ice/snow/graupel microphysics

b) SALSA: prognostic sectional aerosol-cloud-rain-ice microphysics

# Specify sources and targets

# Name of the LES simulation
#exp_name = 'COMBLE_SB_FixN'
#exp_name = 'COMBLE_SB_FixN_noice'
#exp_name = 'COMBLE_SB_FixN_def_z0'
#exp_name = 'COMBLE_SALSA_ProgNc_noice'
exp_name = 'COMBLE_SALSA_ProgNc'
#exp_name = 'COMBLE_SALSA_ProgNcNi'

# Github scratch directory where processed model output will be committed
my_gitdir = '../../output_les/uclales-salsa/sandbox/'

# Source directory (local disk)
my_rundir = '../../../outputs/'

# Output file name prefix
prefix = 'UCLALES-SALSA_Lx25_dx100' # Small domain

# Output file name
sb='SB' in exp_name # SB or SALSA microphysics
if sb:
    # Seifert and Beheng (SB) microphysics
    my_outfile = prefix+exp_name[9:] # Remove 'COMBLE_SB'
else:
    # SALSA microphysics
    my_outfile = prefix+exp_name[12:] # Remove 'COMBLE_SALSA'

# LES inputs
input_filename_ts=my_rundir+exp_name+'.ts.nc'
input_filename_ps=my_rundir+exp_name+'.ps.nc'
input_filename_cs=my_rundir+exp_name+'.cs.nc' # Optional
input_filename_an=my_rundir+exp_name+'.nc'    # Optional
if not os.path.exists(input_filename_ts): print('Missing ts data!')
if not os.path.exists(input_filename_ps): print('Missing ps data!')
cs=os.path.exists(input_filename_cs)
an=os.path.exists(input_filename_an)

# Additional note about microphysics
if sb:
    # SB
    micro = 'Without SALSA, i.e., using the 2M bulk microphysics by Seifert and Beheng (SB). '+\
        'This version has diagnostic clouds (saturation adjustment + fixed CDNC) and prognostic 2M rain, '+\
        'ice, snow and graupel categories.'
else:
    # SALSA
    micro = 'UCLALES-SALSA with prognostic sectional aerosol, cloud and ice (called snow) categories.'

# Constants
p00=1.0e+05 # Reference pressure (Pa)
Rd=287.04   # Specific gas constant for dry air (R_specific=R/M), J/kg/K
cp=1005.0   # Specific heat for a constant pressure
alvl=2.5e+6   # Latent heat for water
alvi=2.834e+6 # Latent heat for ice

Prepare output file in DEPHY format#

Read requested variables list#

Variable description, naming, units, and dimensions.

# read list of requested variables
vars_mean_list = pd.read_excel('https://docs.google.com/spreadsheets/d/1Vl8jYGviet7EtXZuQiitrx4NSkV1x27aJAhxxjBb9zI/export?gid=0&format=xlsx',
                              sheet_name='Mean')
pd.set_option('display.max_rows', None)
vars_mean_list
standard_name variable_id units dimensions comment (10-min average reported at endpoints, green=minimum)
0 time time s dimension, seconds since 2020-03-12 18:00:00
1 height zf m dimension, altitude of mid-level points above ...
2 layer_top_height ze m dimension, altitude of layer top points above ...
3 surface_pressure ps Pa time
4 surface_temperature ts K time
5 surface_friction_velocity ustar m s-1 time
6 surface_roughness_length_for_momentum_in_air z0 m time
7 surface_roughness_length_for_heat_in_air z0h m time
8 surface_roughness_length_for_humidity_in_air z0q m time
9 surface_upward_sensible_heat_flux hfss W m-2 time
10 surface_upward_latent_heat_flux hfls W m-2 time
11 obukhov_length ol m time
12 atmosphere_mass_content_of_liquid_cloud_water lwpc kg m-2 time default breakdown to cloud water and rain in a...
13 atmosphere_mass_content_of_rain_water lwpr kg m-2 time
14 atmosphere_mass_content_of_ice_water iwp kg m-2 time all ice-phase hydrometeors
15 cloud_area_fraction clt 1 time fraction of atmospheric columns with total hyd...
16 optical_depth od 1 time scene (all sky); mid-visible, all hydrometeors...
17 optical_depth_of_liquid_cloud odlc 1 time as for optical_depth but cloud droplets only
18 precipitation_flux_at_surface pr kg m-2 s-1 time liquid and ice phase, all hydrometeors
19 precipitation_flux_at_surface_in_ice_phase pri kg m-2 s-1 time ice phase hydrometeors only
20 toa_outgoing_longwave_flux rlut W m-2 time at top of atmosphere
21 surface_downwelling_longwave_flux rlds W m-2 time
22 surface_upwelling_longwave_flux rlus W m-2 time
23 surface_sea_spray_number_flux ssaf m-2 s-1 time when using prognostic aerosol; emission only (...
24 air_pressure pa Pa time, height
25 eastward_wind ua m s-1 time, height
26 northward_wind va m s-1 time, height
27 air_dry_density rhoa kg m-3 time, height
28 air_temperature ta K time, height
29 water_vapor_mixing_ratio qv kg kg-1 time, height per kg dry air
30 relative_humidity hur 1 time, height relative to liquid
31 relative_humidity_over_ice huri 1 time, height relative to ice
32 air_potential_temperature theta K time, height
33 specific_turbulent_kinetic_energy_resolved tke_res m2 s-2 time, height resolved only; compute mean values horizontall...
34 specific_turbulent_kinetic_energy_sgs tke_sgs m2 s-2 time, height SGS only
35 mass_mixing_ratio_of_cloud_liquid_water_in_air qlc kg kg-1 time, height scene (all sky) per kg dry air; default breakd...
36 mass_mixing_ratio_of_rain_water_in_air qlr kg kg-1 time, height
37 mass_mixing_ratio_of_cloud_ice_in_air qic kg kg-1 time, height default breakdown to cloud_ice, snow and graup...
38 mass_mixing_ratio_of_snow_in_air qis kg kg-1 time, height
39 mass_mixing_ratio_of_graupel_in_air qig kg kg-1 time, height
40 number_of_liquid_cloud_droplets_in_air nlc kg-1 time, height scene (all sky) per kg dry air; default breakd...
41 number_of_rain_drops_in_air nlr kg-1 time, height
42 number_of_cloud_ice_crystals_in_air nic kg-1 time, height default breakdown to cloud_ice, snow and graup...
43 number_of_snow_crystals_in_air nis kg-1 time, height
44 number_of_graupel_crystals_in_air nig kg-1 time, height
45 number_of_total_aerosol_mode1 na1 kg-1 time, height when using prognostic aerosol; scene (all sky)...
46 number_of_total_aerosol_mode2 na2 kg-1 time, height accumulation mode
47 number_of_total_aerosol_mode3 na3 kg-1 time, height sea spray mode
48 number_of_liquid_cloud_droplets_in_cloud nlcic kg-1 time, height per kg dry air where cloud water > 0.01 g/kg; ...
49 number_of_ice_crystals_in_cloud niic kg-1 time, height total ice hydrometeors per kg dry air where cl...
50 dissipation_rate_of_turbulent_kinetic_energy eps m2 s-3 time, height total (including numerical diffusion contribut...
51 zonal_momentum_flux uw m2 s-2 time, height total (resolved plus SGS); for resolved compon...
52 meridional_momentum_flux vw m2 s-2 time, height total (resolved plus SGS); for resolved compon...
53 variance_of_upward_air_velocity w2 m2 s-2 time, height total (resolved plus SGS); for resolved compon...
54 vertical_flux_potential_temperature wth K m s-1 time, height total (resolved plus SGS); for resolved compon...
55 vertical_flux_liquid_ice_water_potential_tempe... vf_thli K m s-1 time, height total (resolved plus SGS); include sedimentati...
56 vertical_flux_water_vapor wqv kg kg-1 m s-1 time, height total (resolved plus SGS); for resolved compon...
57 vertical_flux_total_water vf_qt kg kg-1 m s-1 time, height total (resolved plus SGS); vapor+all liquid+al...
58 area_fraction_of_liquid_cloud flc 1 time, height fraction of cells with cloud water threshold o...
59 precipitation_flux_in_air prf kg m-2 s-1 time, height liquid and ice phase, all hydrometeors
60 precipitation_flux_in_air_in_ice_phase prfi kg m-2 s-1 time, height
61 downwelling_longwave_flux_in_air rld W m-2 time, height
62 upwelling_longwave_flux_in_air rlu W m-2 time, height
63 tendency_of_air_potential_temperature_due_to_r... dth_rad K s-1 time, height
64 tendency_of_air_potential_temperature_due_to_m... dth_micro K s-1 time, height including net condensation and precipitation
65 tendency_of_air_potential_temperature_due_to_m... dth_turb K s-1 time, height including surface fluxes
66 tendency_of_water_vapor_mixing_ratio_due_to_mi... dq_micro kg kg-1 s-1 time, height including net condensation and precipitation
67 tendency_of_water_vapor_mixing_ratio_due_to_mi... dq_turb kg kg-1 s-1 time, height including surface fluxes
68 tendency_of_aerosol_number_due_to_warm_microph... dna_micro_warm kg-1 s-1 time, height activated and unactivated aerosol (sum over al...
69 tendency_of_aerosol_number_due_to_cold_microph... dna_micro_cold kg-1 s-1 time, height activated and unactivated aerosol (sum over al...
70 tendency_of_aerosol_number_due_to_mixing dna_turb kg-1 s-1 time, height activated and unactivated aerosol (sum over al...
71 tendency_of_ice_number_due_to_heterogeneous_fr... dni_het kg-1 s-1 time, height sum of primary ice nucleation due to activatio...
72 tendency_of_ice_number_due_to_secondary_ice_pr... dni_sip kg-1 s-1 time, height sum of secondary ice formation processes (e.g....
73 tendency_of_ice_number_due_to_homogeneous_free... dni_hom kg-1 s-1 time, height ice nucleation source due to homogoeneous free...

Create DEPHY output file#

Write a single file to contain all domain-mean scalar and profile outputs. This code expects the write directory to be pre-existing (already created by the user). In the case that this output will be committed to the comble-mip GitHub repository, see above “Specify directory locations”.

Definitions for the requested outputs#

# Time variable conversions
def calc_ts(standard_name):
    # Return -999 if no data
    tmp=xr.DataArray(np.ones(les_ts['psrf'].shape))*-999.
    #
    # match to LES variable names and determine output
    if standard_name=='surface_pressure':
        return les_ts['psrf'],''
    elif standard_name=='surface_temperature':
        return les_ts['tsrf'],''
    elif standard_name=='surface_friction_velocity':
        return les_ts['ustar'],''
    elif standard_name=='surface_roughness_length_for_momentum_in_air':
        return les_ts['z0m'],''
    elif standard_name=='surface_roughness_length_for_heat_in_air':
        if np.all(les_ts['z0t']==-999.):
            # The same value (z0m) for momentum, humidity and heat
            return les_ts['z0m'],'The same as that for momentum'
        else:
            return les_ts['z0t'],''
    elif standard_name=='surface_roughness_length_for_humidity_in_air':
        if np.all(les_ts['z0t']==-999.):
            # The same value (z0m) for momentum, humidity and heat
            return les_ts['z0m'],'The same as that for momentum'
        else:
            # The same as that for heat
            return les_ts['z0t'],'The same as that for heat'
    elif standard_name=='surface_upward_sensible_heat_flux':
        return les_ts['shf_bar'],''
    elif standard_name=='surface_upward_latent_heat_flux':
        return les_ts['lhf_bar'],''
    elif standard_name=='obukhov_length':
        return les_ts['obl'],''
    elif standard_name=='atmosphere_mass_content_of_liquid_cloud_water':
        # default breakdown to cloud water and rain in a bulk scheme or radius separated at
        # 40 micrometers in a bin scheme; if additional categories are used in a bulk scheme
        # (e.g., a drizzle class), provide additional standard_name variable_id (e.g., lwpd);
        # all lwp* variables will be summed to obtain total liquid water path
        if sb:
            return les_ts['lwp_bar'],''
        else:
            return les_ts['lwp_bar'],'Includes aerosol water' # For SALSA this includes aerosol water
    elif standard_name=='atmosphere_mass_content_of_rain_water':
        return les_ts['rwp_bar'],''
    elif standard_name=='atmosphere_mass_content_of_ice_water':
        # all ice-phase hydrometeors
        if sb:
            return les_ts['iwp_bar']+les_ts['swp_bar']+les_ts['gwp_bar'],''
        else:
            return les_ts['swp_bar'],''
    elif standard_name=='cloud_area_fraction':
        # fraction of atmospheric columns with total hydrometeor mid-visible optical thickness > 2;
        # may assume geometric scatterers; to be compared with satellite measurements
        if 'frac_od' in les_ts.keys():  
            return les_ts['frac_od'],''
        else:
            return les_ts['cfrac'],'Based on cloud water' # Original cloud fraction
    elif standard_name=='optical_depth':
        # scene (all sky); mid-visible, all hydrometeors; may assume geometric scatterers
        return les_ts['tau_liq']+les_ts['tau_ice'],'No gases or vapors'
    elif standard_name=='optical_depth_of_liquid_cloud':
        # as for optical_depth but cloud droplets only
        return les_ts['tau_liq'],'No gases or vapors'
    elif standard_name=='precipitation_flux_at_surface':
        # liquid and ice phase, all hydrometeors
        # Unit conversion for prcp: W/m2/(J/kg)=kg/m2/s
        # Note: cloud water precipitation ignored for SB
        if sb:
            return (les_ts['prcp'])/alvl+(les_ts['iprcp']+les_ts['sprcp']+les_ts['gprcp'])/alvi,''
        else:
            return les_ts['rmH2Ocl']+les_ts['rmH2Opr']+les_ts['rmH2Osn'],''
    elif standard_name=='precipitation_flux_at_surface_in_ice_phase':
        # ice phase hydrometeors only
        if sb:
            return (les_ts['iprcp']+les_ts['sprcp']+les_ts['gprcp'])/alvi,''
        else:
            return les_ts['rmH2Osn'],''
    elif standard_name=='toa_outgoing_longwave_flux': 
        return les_ts['toa_lwu'],''
    elif standard_name=='surface_downwelling_longwave_flux':
        return les_ts['srf_lwd'],''
    elif standard_name=='surface_upwelling_longwave_flux': 
        return les_ts['srf_lwu'],''
    elif standard_name=='surface_sea_spray_number_flux':
        # when using prognostic aerosol; emission only (not including dry or wet deposition); total over all aerosol modes
        if sb:
            return tmp,'NA'
        else:
            return les_ts['flx_aer'],''
    #
    print('Undefined ts:'+standard_name)
    return tmp,'NA'
# Profile variable conversions
def calc_ps(standard_name):
    # Return -999 if no data
    tmp=xr.DataArray(np.ones(les_ps['p'].shape))*-999.
    #
    # SALSA bin limits (lower limits as diameters in nm)
    if not sb: rad=np.round(les_ps['B_Rd12a'].values*2e9)
    #
    # match to LES variable names and determine output
    if standard_name=='air_pressure':
        return les_ps['p'],''
    elif standard_name=='eastward_wind':
        return les_ps['u'],''
    elif standard_name=='northward_wind':
        return les_ps['v'],''
    elif standard_name=='air_dry_density':
        # Note: UCLALES-SALSA assumes the same densities for dry and moist air
        return les_ps['rho_air'],'For dry air'
    elif standard_name=='air_temperature':
        # Calculate fron theta_L
        return (les_ps['thl']+(les_ps['l']+les_ps['rr'])*(alvl/cp))*(les_ps['p']/p00)**(Rd/cp),'Calculated from theta_L'
        #return les_ps['T_avg'],''
    elif standard_name=='water_vapor_mixing_ratio':
        # per kg dry air
        return les_ps['rv'],''
    elif standard_name=='relative_humidity':
        # relative to liquid
        return les_ps['SS_avg']/100.+1.,'' # Convert SS to RH/100%
    elif standard_name=='relative_humidity_over_ice':
        # relative to ice
        return les_ps['SSi_avg']/100.+1.,'' # Convert SS to RH/100%
    elif standard_name=='air_potential_temperature':
        # Calculate fron theta_L
        return les_ps['thl']+(les_ps['l']+les_ps['rr'])*(alvl/cp),'Calculated from theta_L'
    elif standard_name=='specific_turbulent_kinetic_energy_resolved':
        # resolved only
        return les_ps['res_tke'],''
    elif standard_name=='specific_turbulent_kinetic_energy_sgs':
        # SGS only
        return les_ps['sfs_tke'],''
    elif standard_name=='mass_mixing_ratio_of_cloud_liquid_water_in_air':
        # scene (all sky) per kg dry air; default breakdown to cloud water and rain in a bulk scheme
        # or radius separated at 40 micrometers in a bin scheme; if additional categories are used 
        # in a bulk scheme (e.g., a drizzle class), provide additional standard_name variable_id 
        # (e.g., qld); all ql* variables will be summed to obtain total liquid mixing ratio
        if sb:
            return les_ps['l'],''
        else:
            return les_ps['l'],'Includes aerosol water'
    elif standard_name=='mass_mixing_ratio_of_rain_water_in_air':
        return les_ps['rr'],''
    elif standard_name=='mass_mixing_ratio_of_cloud_ice_in_air':
        # default breakdown to cloud_ice, snow and graupel; if other categories are used, 
        # provide additional standard_name and qiX variable_id; all qi* variables will be
        # summed to obtain total ice mixing ratio
        if sb:
            return les_ps['ri'],''
        else:
            # SALSA has just ice (called snow) so set snow and graupel to NA
            return les_ps['rs'],'Called snow in SALSA'
    elif standard_name=='mass_mixing_ratio_of_snow_in_air':
        if sb:
            return les_ps['rs'],''
        else:
            return tmp,'NA'
    elif standard_name=='mass_mixing_ratio_of_graupel_in_air':
        if sb:
            return les_ps['rg'],''
        else:
            return tmp,'NA'
    elif standard_name=='number_of_liquid_cloud_droplets_in_air':
        # scene (all sky) per kg dry air; default breakdown to cloud water and rain;
        # if other categories are used, provide additional standard_name and nl* variable_id
        return les_ps['tcNct'],''
    elif standard_name=='number_of_rain_drops_in_air':
        return les_ps['tcNrt'],''
    elif standard_name=='number_of_cloud_ice_crystals_in_air':
        # default breakdown to cloud_ice, snow and graupel; if other categories are used,
        # provide additional standard_name and niX variable_id; all ni* variables will be summed
        # to obtain total ice number mixing ratio
        if sb:
            return les_ps['tcNit'],''
        else:
            return les_ps['tcNst'],'Called snow in SALSA'
    elif standard_name=='number_of_snow_crystals_in_air':
        if sb:
            return les_ps['tcNst'],''
        else:
            return tmp,'NA'
    elif standard_name=='number_of_graupel_crystals_in_air':
        if sb:
            return les_ps['tcNgt'],''
        else:
            return tmp,'NA'
    elif standard_name=='number_of_total_aerosol_mode1':
        # when using prognostic aerosol; scene (all sky); activated + unactivated: Aitken mode
        if sb:
            return tmp,'NA'
        else:
            # SALSA Aitken mode: bins 0-2 (1a aerosol)
            aa=les_ps['B_Naa'][:,0:2,:].sum(dim='B_Rd12a') #+les_ps['B_Nca'][:,0:-1,:].sum(dim='B_Rd2ab')
            return aa,'SALSA 1a aerosol (d<'+str(rad[3])+' nm)'
    elif standard_name=='number_of_total_aerosol_mode2':
        # accumulation mode
        if sb:
            return tmp,'NA'
        else:
            # SALSA accumulation mode: bins 3-7 
            # The larger aerosol and cloud a-bins
            aa=les_ps['B_Naa'][:,3:7,:].sum(dim='B_Rd12a')+les_ps['B_Nca'][:,0:4,:].sum(dim='B_Rd2ab')
            return aa,'SALSA 2a aerosol+cloud ('+str(rad[3])+' nm < d <'+str(rad[8])+'nm)'
    elif standard_name=='number_of_total_aerosol_mode3':
        # sea spray mode
        if sb:
            return tmp,'NA'
        else:
            # SALSA sea spray mode: bins 8-
            aa=les_ps['B_Naa'][:,8:,:].sum(dim='B_Rd12a')+les_ps['B_Nca'][:,5:,:].sum(dim='B_Rd2ab')
            return aa,'SALSA 2a aerosol+cloud (d>'+str(rad[8])+'nm)'
    elif standard_name=='number_of_liquid_cloud_droplets_in_cloud':
        # per kg dry air where cloud water > 0.01 g/kg; breakdown to cloud water and rain in
        # a bulk scheme or radius separated at 40 micrometers in a bin scheme
        return les_ps['icNct'],''
    elif standard_name=='number_of_ice_crystals_in_cloud':
        # total ice hydrometeors per kg dry air where cloud water > 0.01 g/kg; within liquid
        # cloud boundaries in order to check immersion freezing
        if sb:
            return les_ps['icNit']+les_ps['icNst']+les_ps['icNgt'],''
        else:
            return les_ps['icNst'],''
    elif standard_name=='dissipation_rate_of_turbulent_kinetic_energy':
        # total (including numerical diffusion contributions if relevant); report as negative
        return les_ps['diss'],''
    elif standard_name=='zonal_momentum_flux':
        # total (resolved plus SGS)
        return les_ps['tot_uw'],''
    elif standard_name=='meridional_momentum_flux':
        return les_ps['tot_vw'],''
    elif standard_name=='variance_of_upward_air_velocity':
        return les_ps['w_2'],''
    elif standard_name=='vertical_flux_potential_temperature':
        # total (resolved plus SGS)
        # Not available: les_ps['tot_tw'] is for ice-liquid potential temperature
        return tmp,'NA'
    elif standard_name=='vertical_flux_liquid_ice_water_potential_temperature':
        # total (resolved plus SGS); include sedimentation fluxes
        # les_ps['tot_tw'] does not include sedimentation fluxes
        return tmp,'NA'
    elif standard_name=='vertical_flux_water_vapor':
        # total (resolved plus SGS)
        # SALSA has water vapor, SB total water
        if sb:
            return tmp,'NA'
        else:
            return les_ps['tot_qw'],''
    elif standard_name=='vertical_flux_total_water':
        # total (resolved plus SGS); vapor+all liquid+all ice; include sedimentation fluxes
        if sb and 'hrate' in les_ps.keys():
            return les_ps['tot_qw']+(les_ps['crate']+les_ps['rrate'])/alvl+(les_ps['irate']+les_ps['srate']+les_ps['grate']+les_ps['hrate'])/alvi,''
        elif sb:
            return les_ps['tot_qw']+(les_ps['crate']+les_ps['rrate'])/alvl+(les_ps['irate']+les_ps['srate']+les_ps['grate'])/alvi,''
        else:
            return tmp,'NA'
    elif standard_name=='area_fraction_of_liquid_cloud':
        # fraction of cells with cloud water threshold of 0.01 g/kg, not including rain class
        return les_ps['frac_ic'],''
    elif standard_name=='precipitation_flux_in_air':
        # liquid and ice phase, all hydrometeors
        # W/m2/(J/kg)=kg/m2/s
        if sb:
            return (les_ps['crate']+les_ps['rrate'])/alvl+(les_ps['irate']+les_ps['srate']+les_ps['grate'])/alvi,''
        else:
            return (les_ps['crate']+les_ps['rrate'])/alvl+(les_ps['srate'])/alvi,''
    elif standard_name=='precipitation_flux_in_air_in_ice_phase':
        if sb:
            return (les_ps['irate']+les_ps['srate']+les_ps['grate'])/alvi,''
        else:
            return les_ps['srate']/alvi,''
    elif standard_name=='downwelling_longwave_flux_in_air':
        return les_ps['lw_down'],''
    elif standard_name=='upwelling_longwave_flux_in_air':
        return les_ps['lw_up'],''
    elif standard_name=='tendency_of_air_potential_temperature_due_to_radiative_heating':
        # There are no theta outputs
        return tmp,'NA'
    elif standard_name=='tendency_of_air_potential_temperature_due_to_microphysics':
        return tmp,'NA'
    elif standard_name=='tendency_of_air_potential_temperature_due_to_mixing':
        return tmp,'NA'
    elif standard_name=='tendency_of_water_vapor_mixing_ratio_due_to_microphysics':
        # including net condensation and precipitation
        # This is available for SALSA
        if sb:
            return tmp,'NA'
        else:
            return les_ps['mcrp_rv'],'Without precipitation'
    elif standard_name=='tendency_of_water_vapor_mixing_ratio_due_to_mixing':
        # including surface fluxes
        if sb:
            return tmp,'NA'
        else:
            return les_ps['advf_rv']+les_ps['diff_rv'],''
    elif standard_name=='tendency_of_aerosol_number_due_to_warm_microphysics':
        # activated and unactivated aerosol (sum over all modes); losses to liquid-liquid hydrometeor collisions
        # + any other liquid-phase sources/sinks that may be accounted for (e.g., from drop breakup); 
        # this quantity accounts for all microphysical aerosol source terms in a liquid-only simulation
        # Separate warm and cold outputs are not available!
        return tmp,'NA'
    elif standard_name=='tendency_of_aerosol_number_due_to_cold_microphysics':
        return tmp,'NA'
    elif standard_name=='tendency_of_aerosol_number_due_to_mixing':
        # activated and unactivated aerosol (sum over all modes); including surface fluxes (sea spray, 
        # dry deposition if included, etc.)
        if sb:
            return tmp,'NA'
        else:
            return les_ps['advf_na']+les_ps['advf_nc']+les_ps['srfc_na'],'No dry deposition'
    elif standard_name=='tendency_of_ice_number_due_to_heterogeneous_freezing':
        # sum of primary ice nucleation due to activation of heterogeneous INP; also, in a diagnostic run,
        # the ice crystals introduced to meet the diagnostic target
        if sb:
            # Fixed primary ice
            return les_ps['nucl_ni'],''
        else:
            # Fixed primary ice
            return les_ps['nucf_ns'],''
    elif standard_name=='tendency_of_ice_number_due_to_secondary_ice_production':
        # sum of secondary ice formation processes (e.g., Hallet-Mossop plus any others)
        return tmp,'NA' # Switched off
    elif standard_name=='tendency_of_ice_number_due_to_homogeneous_freezing':
        # ice nucleation source due to homogoeneous freezing
        if sb:
            return tmp,'NA' # Switched off
        else:
            return les_ps['nucm_ns'],''
    #
    print('Undefined ps:'+standard_name+'!')
    return tmp,'NA'

Generate output#

# Open source files
les_ts = xr.open_dataset(input_filename_ts)
les_ps = xr.open_dataset(input_filename_ps)

# create DEPHY output file
dephy_filename = my_gitdir + my_outfile + '.nc'
if os.path.exists(dephy_filename):
    try:
        os.remove(dephy_filename)
        print('The file ' + dephy_filename + ' has been deleted successfully')
    except Exception as e:
        print('Failed to delete '+dephy_filename+': ',e) 
dephy_file = Dataset(dephy_filename,mode='w',format='NETCDF3_CLASSIC')

# create global attributes
dephy_file.title='UCLALES-SALSA results for COMBLE-MIP case'
dephy_file.reference='https://github.com/ARM-Development/comble-mip'
dephy_file.authors='Tomi Raatikainen (tomi.raatikainen@fmi.fi)'
dephy_file.source=exp_name
dephy_file.version=dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
dephy_file.format_version='DEPHY SCM format version 1.6'
dephy_file.script='convert_UCLALES-SALSA_output_to_dephy_format.ipynb'
dephy_file.startDate='2020-03-12T22:00:00Z'

# Additional note about microphysics
dephy_file.note=micro

# create dimensions

# zf = dimension, altitude of mid-level points above sea surface = zf
nz = les_ps.sizes['zt']-1
zf = dephy_file.createDimension('zf', nz)
zf = dephy_file.createVariable('zf', np.float64, ('zf',))
zf.units = 'm'
zf.long_name = 'altitude'
zf[:] = les_ps['zt'][1:].data

# ze = dimension, altitude of layer top points above sea surface (used for vertical integrations) = zm
ze = dephy_file.createDimension('ze', nz)
ze = dephy_file.createVariable('ze', np.float64, ('ze',))
ze.units = 'm'
ze.long_name = 'altitude'
ze[:] = les_ps['zm'][1:].data

# time = seconds since 2020-03-12 18:00:00 - Note: here the start time is 2020-03-12 22:00:00
nt = les_ps.sizes['time']
time = dephy_file.createDimension('time', nt)
time = dephy_file.createVariable('time', np.float64, ('time',))
time.units = 'seconds since ' + dephy_file.startDate
time.long_name = 'time'
time[:] = 5.*np.floor(les_ps['time'].data/5.) # Model time may exceed target time by 1 s

# create variables
for index in vars_mean_list.index[2:]:
    # Output
    std_name = vars_mean_list.standard_name.iat[index]
    var_name = vars_mean_list.variable_id.iat[index]
    if vars_mean_list.dimensions.iat[index]=='time':
        # 1D time series
        new_sca = dephy_file.createVariable(var_name, np.float64, ('time'))
        new_sca.units = vars_mean_list.units.iat[index]
        new_sca.long_name = std_name
        try:
            out,note=calc_ts(std_name)
            if note!='NA' and not np.all(out==-999.): # No data: do not fill the variable field
                # Current ts-data is with 2 min output frequency => needs to be averaged
                if np.any(out==-999.): print('Warning: averaging missing values for ',std_name)
                time0=time[0]
                for i in range(nt):
                    new_sca[i]=out.sel(time=slice(time0,time[i]+1.5)).mean('time')
                    time0=time[i]+1.5
                if len(note)>0: new_sca.note=note
        except Exception as e:
            print('Failed: '+std_name,e)
    elif vars_mean_list.dimensions.iat[index]=='time, height':
        # 2D (z,time)
        new_snd = dephy_file.createVariable(var_name, np.float64, ('time','zf'))
        new_snd.units = vars_mean_list.units.iat[index]
        new_snd.long_name = std_name
        try:
            arr,note = calc_ps(std_name)
            if note!='NA' and not np.all(arr==-999.): # No data: do not fill the variable field
                if np.any(arr==-999.): print('Warning: including missing values for ',std_name)
                new_snd[:]=arr[:,1:] # Without z<0
                if len(note)>0: new_snd.note=note
        except Exception as e:
            print('Failed: '+std_name,e)
print(dephy_file)

# Close all files
dephy_file.close()
les_ts.close()
les_ps.close()
The file ../../output_les/uclales-salsa/sandbox/UCLALES-SALSA_Lx25_dx100_ProgNc.nc has been deleted successfully
<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
    title: UCLALES-SALSA results for COMBLE-MIP case
    reference: https://github.com/ARM-Development/comble-mip
    authors: Tomi Raatikainen (tomi.raatikainen@fmi.fi)
    source: COMBLE_SALSA_ProgNc
    version: 2024-08-07 09:02:16
    format_version: DEPHY SCM format version 1.6
    script: convert_UCLALES-SALSA_output_to_dephy_format.ipynb
    startDate: 2020-03-12T22:00:00Z
    note: UCLALES-SALSA with prognostic sectional aerosol, cloud and ice (called snow) categories.
    dimensions(sizes): zf(159), ze(159), time(121)
    variables(dimensions): float64 zf(zf), float64 ze(ze), float64 time(time), float64 ps(time), float64 ts(time), float64 ustar(time), float64 z0(time), float64 z0h(time), float64 z0q(time), float64 hfss(time), float64 hfls(time), float64 ol(time), float64 lwpc(time), float64 lwpr(time), float64 iwp(time), float64 clt(time), float64 od(time), float64 odlc(time), float64 pr(time), float64 pri(time), float64 rlut(time), float64 rlds(time), float64 rlus(time), float64 ssaf(time), float64 pa(time, zf), float64 ua(time, zf), float64 va(time, zf), float64 rhoa(time, zf), float64 ta(time, zf), float64 qv(time, zf), float64 hur(time, zf), float64 huri(time, zf), float64 theta(time, zf), float64 tke_res(time, zf), float64 tke_sgs(time, zf), float64 qlc(time, zf), float64 qlr(time, zf), float64 qic(time, zf), float64 qis(time, zf), float64 qig(time, zf), float64 nlc(time, zf), float64 nlr(time, zf), float64 nic(time, zf), float64 nis(time, zf), float64 nig(time, zf), float64 na1(time, zf), float64 na2(time, zf), float64 na3(time, zf), float64 nlcic(time, zf), float64 niic(time, zf), float64 eps(time, zf), float64 uw(time, zf), float64 vw(time, zf), float64 w2(time, zf), float64 wth(time, zf), float64 vf_thli(time, zf), float64 wqv(time, zf), float64 vf_qt(time, zf), float64 flc(time, zf), float64 prf(time, zf), float64 prfi(time, zf), float64 rld(time, zf), float64 rlu(time, zf), float64 dth_rad(time, zf), float64 dth_micro(time, zf), float64 dth_turb(time, zf), float64 dq_micro(time, zf), float64 dq_turb(time, zf), float64 dna_micro_warm(time, zf), float64 dna_micro_cold(time, zf), float64 dna_turb(time, zf), float64 dni_het(time, zf), float64 dni_sip(time, zf), float64 dni_hom(time, zf)
    groups: 

Generate 2D and 3D outputs#

2D#

# read list of requested variables
vars_2d_list = pd.read_excel('https://docs.google.com/spreadsheets/d/1Vl8jYGviet7EtXZuQiitrx4NSkV1x27aJAhxxjBb9zI/export?format=xlsx&gid=1756539842')
vars_2d_list
standard_name variable_id units dimensions comment (10-min instantaneous)
0 time time s dimension, seconds since 2020-03-12 18:00:00
1 x x m dimension
2 y y m dimension
3 surface_upward_sensible_heat_flux hfss W m-2 time, x, y
4 surface_upward_latent_heat_flux hfls W m-2 time, x, y
5 surface_friction_velocity ustar m s-1 time, x, y
6 surface_eastward_wind us m s-1 time, x, y at 10-m for comparison with SAR satellite meas...
7 surface_northward_wind vs m s-1 time, x, y at 10-m for comparison with SAR satellite meas...
8 precipitation_flux_at_surface pr kg m-2 s-1 time, x, y all hydrometeors
9 atmosphere_mass_content_of_liquid_water lwp kg m-2 time, x, y all liquid hydrometeors
10 atmosphere_mass_content_of_ice iwp kg m-2 time, x, y all ice hydrometeors
11 atmosphere_optical_thickness opt 1 time, x, y all hydrometeors for comparison with VIIRS; mi...
12 pseudo-albedo alb 1 time, x, y opt/(opt+13), where opt = all hydrometeor opti...
13 toa_outgoing_longwave_flux_atmospheric_window olr11 K time, x, y flux at top-of-atmosphere in window containing...
# Column (2D) variable conversions

# Dimensions
# time (s), seconds since 2020-03-12 18:00:00
# x, x (m)
# y, y (m)

def calc_cs(standard_name):
    # Return -999 if no data
    tmp=xr.DataArray(np.ones(les_cs['shf_bar'].shape))*-999.
    #
    # match to LES variable names and determine output
    if standard_name=='surface_upward_sensible_heat_flux':
        return les_cs['shf_bar'],''
    elif standard_name=='surface_upward_latent_heat_flux':
        return les_cs['lhf_bar'],''
    elif standard_name=='surface_friction_velocity':
        return les_cs['ustar'],''
    elif standard_name=='surface_eastward_wind':
        return les_cs['us'],''
    elif standard_name=='surface_northward_wind':
        return les_cs['vs'],''
    elif standard_name=='precipitation_flux_at_surface':
        # all hydrometeors
        if sb:
            return (les_cs['rprcp'])/alvl+(les_cs['iprcp']+les_cs['sprcp']+les_cs['gprcp'])/alvi,''
        else:
            return (les_cs['cprcp']+les_cs['rprcp'])/alvl+les_cs['sprcp']/alvi,''
    elif standard_name=='atmosphere_mass_content_of_liquid_water':
        # all liquid hydrometeors
        return les_cs['lwp']+les_cs['rwp'],''
    elif standard_name=='atmosphere_mass_content_of_ice':
        if sb:
            return les_cs['iwp']+les_cs['swp']+les_cs['gwp'],''
        else:
            return les_cs['swp'],''
    elif standard_name=='atmosphere_optical_thickness':
        # all hydrometeors for comparison with VIIRS; mid-visible, may assume geometric scatterers
        return les_cs['tau_liq']+les_cs['tau_ice'],'No gases or vapors'
    elif standard_name=='pseudo-albedo':
        # opt/(opt+13), where opt = all hydrometeor optical depth as reported in domain-mean
        return (les_cs['tau_liq']+les_cs['tau_ice'])/(les_cs['tau_liq']+les_cs['tau_ice']+13),''
    elif standard_name=='toa_outgoing_longwave_flux_atmospheric_window':
        # flux at top-of-atmosphere in window containing 10.8 µm, please specify wavelength range
        return les_cs['toa_lwu'],'Total LW'
    #
    print('Undefined cs:'+standard_name+'!')
    return tmp,'NA'

Generate outputs#

# Open source files
if not os.path.exists(input_filename_cs): raise Exception('Input file not found!')
les_cs = xr.open_dataset(input_filename_cs)

# create DEPHY output file
dephy_filename = my_gitdir + my_outfile + '_2D.nc'
if os.path.exists(dephy_filename):
    try:
        os.remove(dephy_filename)
        print('The file '+dephy_filename+' has been deleted successfully')
    except Exception as e:
        print('Failed to delete '+dephy_filename+': ',e) 
dephy_file = Dataset(dephy_filename,mode='w',format='NETCDF3_CLASSIC')

# create global attributes
dephy_file.title='UCLALES-SALSA results for COMBLE-MIP case'
dephy_file.reference='https://github.com/ARM-Development/comble-mip'
dephy_file.authors='Tomi Raatikainen (tomi.raatikainen@fmi.fi)'
dephy_file.source=exp_name
dephy_file.version=dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
dephy_file.format_version='DEPHY SCM format version 1.6'
dephy_file.script='convert_UCLALES-SALSA_output_to_dephy_format.ipynb'
dephy_file.startDate='2020-03-12T22:00:00Z'

# Additional note about microphysics
dephy_file.note=micro

# create dimensions
# x, y
nx = les_cs.sizes['xt']
x = dephy_file.createDimension('x', nx)
x = dephy_file.createVariable('x', np.float64, ('x',))
x.units = 'm'
x.long_name = 'x'
x[:] = les_cs['xt'].data

ny = les_cs.sizes['yt']
y = dephy_file.createDimension('y', ny)
y = dephy_file.createVariable('y', np.float64, ('y',))
y.units = 'm'
y.long_name = 'y'
y[:] = les_cs['yt'].data

# time
t10min=True #False
if t10min:
    # 10 min resolution
    nt = les_cs.sizes['time']
    time = dephy_file.createDimension('time', nt)
    time = dephy_file.createVariable('time', np.float64, ('time',))
    time.units = 'seconds since ' + dephy_file.startDate
    time.long_name = 'time'
    time[:] = 5.*np.floor(les_cs['time'].data/5.) # Model time may exceed target time by 1 s
else:
    # 60 min resolution
    nt = (les_cs.sizes['time']-1)/6+1
    time = dephy_file.createDimension('time', nt)
    time = dephy_file.createVariable('time', np.float64, ('time',))
    time.units = 'seconds since ' + dephy_file.startDate
    time.long_name = 'time'
    time[:] = 5.*np.floor(les_cs['time'][::6].data/5.) # Model time may exceed target time by 1 s

preci = np.float64 # Default
#preci = np.float32 # To save disc space

# create variables
for index in vars_2d_list.index[3:]:
    # Output
    std_name = vars_2d_list.iat[index,0]
    var_name = vars_2d_list.iat[index,1]
    new = dephy_file.createVariable(var_name, preci, ('time','x','y'))
    new.units = vars_2d_list.units.iat[index]
    new.long_name = std_name
    try:
        dat,note=calc_cs(std_name)
        # NA means no data
        if note=='NA':
            print('Ignoring '+std_name+' (no data)')
        else:
            if t10min:
                new[:]=dat # 10 min resolution
            else:
                new[:]=dat[::6,:,:] # 60 min resolution
            if len(note)>0: new.note=note
    except Exception as e:
        print('Failed: '+std_name,e)

print(dephy_file)

# Close all files
dephy_file.close()
les_cs.close()
Ignoring toa_outgoing_longwave_flux_atmospheric_window (no data)
<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
    title: UCLALES-SALSA results for COMBLE-MIP case
    reference: https://github.com/ARM-Development/comble-mip
    authors: Tomi Raatikainen (tomi.raatikainen@fmi.fi)
    source: COMBLE_SB_FixN
    version: 2024-03-15 09:59:49
    format_version: DEPHY SCM format version 1.6
    script: convert_UCLALES-SALSA_output_to_dephy_format.ipynb
    startDate: 2020-03-12T22:00:00Z
    note: Without SALSA, i.e., using the 2M bulk microphysics by Seifert and Beheng (SB). This version has diagnostic clouds (saturation adjustment + fixed CDNC) and prognostic 2M rain, ice, snow and graupel categories.
    dimensions(sizes): x(256), y(256), time(121)
    variables(dimensions): float64 x(x), float64 y(y), float64 time(time), float32 hfss(time, x, y), float32 hfls(time, x, y), float32 ustar(time, x, y), float32 us(time, x, y), float32 vs(time, x, y), float32 pr(time, x, y), float32 lwp(time, x, y), float32 iwp(time, x, y), float32 opt(time, x, y), float32 alb(time, x, y)
    groups: 

3D#

# read list of requested variables
vars_3d_list = pd.read_excel('https://docs.google.com/spreadsheets/d/1Vl8jYGviet7EtXZuQiitrx4NSkV1x27aJAhxxjBb9zI/export?format=xlsx&gid=1233994833')
vars_3d_list
standard_name variable_id units dimensions comment (60-min instantaneous, red=required for EMC2)
0 time time s dimension, seconds since 2020-03-12 18:00:00
1 x x m dimension
2 y y m dimension
3 height zf m dimension, altitude of mid-level points above ...
4 air_pressure pa Pa time, height
5 eastward_wind ua m s-1 time, height, x, y
6 northward_wind va m s-1 time, height, x, y
7 upward_air_velocity wa m s-1 time, height, x, y
8 air_temperature ta K time, height, x, y
9 air_dry_density rhoa kg m-3 time, height, x, y
10 water_vapor_mixing_ratio qv kg kg-1 time, height, x, y per kg dry air
11 mass_mixing_ratio_of_cloud_liquid_water_in_air qlc kg kg-1 time, height, x, y per kg dry air; default breakdown to cloud wat...
12 mass_mixing_ratio_of_rain_water_in_air qlr kg kg-1 time, height, x, y
13 mass_mixing_ratio_of_cloud_ice_in_air qic kg kg-1 time, height, x, y default breakdown to cloud_ice, snow and graup...
14 mass_mixing_ratio_of_snow_in_air qis kg kg-1 time, height, x, y
15 mass_mixing_ratio_of_graupel_in_air qig kg kg-1 time, height, x, y
16 number_of_dry_aerosol_in_air na kg-1 time, height, x, y per kg dry air; when using prognostic aerosol
17 number_of_cloud_droplets_in_air nlc kg-1 time, height, x, y when using prognostic aerosol
18 number_of_rain_droplets_in_air nlr kg-1 time, height, x, y
19 number_of_cloud_ice_crystals_in_air nic kg-1 time, height, x, y default breakdown to cloud_ice, snow and graup...
20 number_of_snow_crystals_in_air nis kg-1 time, height, x, y
21 number_of_graupel_crystals_in_air nig kg-1 time, height, x, y
22 dissipation_rate_of_turbulent_kinetic_energy eps m2 s-3 time, height, x, y including numerical diffusion contributions if...
23 mass_weighted_fall_speed_of_liquid_cloud_water vmlc m s-1 time, height, x, y EMC2 uses mass-weighted fall-speed profiles fo...
24 mass_weighted_fall_speed_of_rain vmlr m s-1 time, height, x, y
25 mass_weighted_fall_speed_of_ice_cloud vmic m s-1 time, height, x, y if other ice-phase categories are used, provid...
26 mass_weighted_fall_speed_of_snow vmis m s-1 time, height, x, y
27 mass_weighted_fall_speed_of_graupel vmig m s-1 time, height, x, y
28 tendency_of_condensation tend_cond s-1 time, height, x, y combined tendencies of cloud liquid and rain w...
29 tendency_of_deposition tend_dep s-1 time, height, x, y tendency of ice mixing ratio due to deposition...
30 tendency_of_riming tend_rim s-1 time, height, x, y tendency of ice mixing ratio due to riming; su...
# Analysis (3D) variable conversions

# Dimensions
# time (s), seconds since 2020-03-12 18:00:00
# x, x (m)
# y, y (m)
# height, zf (m), altitude of mid-level points above sea surface

def calc_an(standard_name):
    # Return -999 if no data
    tmp=xr.DataArray(np.ones(les_an['p'].shape))*-999.
    #
    # match to LES variable names and determine output
    if standard_name=='air_pressure':
        return les_an['p'],''
    elif standard_name=='eastward_wind':
        # Note: need to interpolate for cell centers!
        return les_an['u'],''
    elif standard_name=='northward_wind':
        # Note: need to interpolate for cell centers!
        return les_an['v'],''
    elif standard_name=='upward_air_velocity':
        # Note: need to interpolate for cell centers!
        return les_an['w'],''
    elif standard_name=='air_temperature':
        # temp=theta*(press/p00)^(Rd/cp)
        return les_an['theta']*(les_an['p']/p00)**(Rd/cp),'Calculated'
    elif standard_name=='air_dry_density':
        # rho=press/(Rd*temp)
        return les_an['p']/(Rd*les_an['theta']*(les_an['p']/p00)**(Rd/cp)),'Calculated'
    elif standard_name=='water_vapor_mixing_ratio':
        # per kg dry air
        if sb:
            return les_an['q']-les_an['l']-les_an['r']-les_an['i']-les_an['s']-les_an['g'],'Calculated'
        else:
            return les_an['q']-les_an['l']-les_an['r']-les_an['s'],'Calculated'
    elif standard_name=='mass_mixing_ratio_of_cloud_liquid_water_in_air':
        # per kg dry air; default breakdown to cloud water and rain; if other categories are used,
        # provide additional standard_name and ql* variable_id; all ql* variables will be summed 
        # to obtain total liquid mixing ratio
        if sb:
            return les_an['l'],''
        else:
            return les_an['l'],'Includes aerosol water'
    elif standard_name=='mass_mixing_ratio_of_rain_water_in_air':
        return les_an['r'],''
    elif standard_name=='mass_mixing_ratio_of_cloud_ice_in_air':
        # default breakdown to cloud_ice, snow and graupel; if other categories are used,
        # provide additional standard_name and qiX variable_id; all qi* variables will be summed
        # to obtain total ice mixing ratio
        if sb:
            return les_an['i'],''
        else:
            # SALSA has just snow
            return les_an['s'],'Called snow in SALSA'
    elif standard_name=='mass_mixing_ratio_of_snow_in_air':
        if sb:
            return les_an['s'],''
        else:
            return tmp,'NA'
    elif standard_name=='mass_mixing_ratio_of_graupel_in_air':
        if sb:
            return les_an['g'],''
        else:
            return tmp,'NA'
    elif standard_name=='number_of_dry_aerosol_in_air':
        # per kg dry air; when using prognostic aerosol
        if sb:
            return tmp,'NA'
        else:
            return les_an['C_Naa'],''
    elif standard_name=='number_of_cloud_droplets_in_air':
        # when using prognostic aerosol
        if sb:
            return tmp,'NA'
        else:
            return les_an['C_Nca'],''
    elif standard_name=='number_of_rain_droplets_in_air':
        if sb:
            return les_an['n'],''
        else:
            return les_an['C_Nrt'],''
    elif standard_name=='number_of_cloud_ice_crystals_in_air':
        # default breakdown to cloud_ice, snow and graupel; if other categories are used,
        # provide additional standard_name and niX variable_id; all ni* variables will be
        # summed to obtain total ice number mixing ratio
        if sb:
            return les_an['ni'],''
        else:
            return les_an['C_Nst'],'Called snow in SALSA'
    elif standard_name=='number_of_snow_crystals_in_air':
        if sb:
            return les_an['ns'],''
        else:
            return tmp,'NA'
    elif standard_name=='number_of_graupel_crystals_in_air':
        if sb:
            return les_an['ng'],''
        else:
            return tmp,'NA'
    elif standard_name=='dissipation_rate_of_turbulent_kinetic_energy':
        # including numerical diffusion contributions if relevant; report as negative
        return les_an['diss'],''
    elif standard_name=='mass_weighted_fall_speed_of_liquid_cloud_water':
        # Curretly not available
        return tmp,'NA'
    elif standard_name=='mass_weighted_fall_speed_of_rain':
        return tmp,'NA'
    elif standard_name=='mass_weighted_fall_speed_of_ice_cloud':
        return tmp,'NA'
    elif standard_name=='mass_weighted_fall_speed_of_snow':
        return tmp,'NA'
    elif standard_name=='mass_weighted_fall_speed_of_graupel':
        return tmp,'NA'
    elif standard_name=='tendency_of_condensation':
        # combined tendencies of cloud liquid and rain water mixing ratios due to
        # condensation/evaporation (+ for condensation, - for evaporation)
        if sb:
            return les_an['cond_rr'],'Rain only'
        else:
            return les_an['cond_ra']+les_an['cond_rc']+les_an['cond_rr'],'Aerosol, cloud and rain'
    elif standard_name=='tendency_of_deposition':
        # tendency of ice mixing ratio due to deposition/sublimation; sum over all
        # ice hydrometeor classes (+ for deposition, - for sublimation)
        if sb:
            return les_an['cond_ri']+les_an['cond_rs']+les_an['cond_rg'],''
        else:
            return les_an['cond_rs'],''
    elif standard_name=='tendency_of_riming':
        # tendency of ice mixing ratio due to riming; sum over all ice hydrometeor classes
        if sb:
            return -les_an['rimi_rc']-les_an['rimi_rr'],'Cloud and rain'
        else:
            return les_an['coag_rs'],''
    #
    print('Undefined an:'+standard_name+'!')
    return tmp,'NA'

Generate outputs#

# Open source files
if not os.path.exists(input_filename_an): raise Exception('Input file not found!')
les_an = xr.open_dataset(input_filename_an)

# create DEPHY output file
dephy_filename = my_gitdir + my_outfile + '_3D.nc'
if os.path.exists(dephy_filename):
    try:
        os.remove(dephy_filename)
        print('The file '+dephy_filename+' has been deleted successfully')
    except Exception as e:
        print('Failed to delete '+dephy_filename+': ',e)
dephy_file = Dataset(dephy_filename,mode='w',format='NETCDF4')
# Note 1: NETCDF3_CLASSIC is not valid for 2+ GB files
# Note 2: even with float32 and zlib=True the output is at least 7 GB

# create global attributes
dephy_file.title='UCLALES-SALSA results for COMBLE-MIP case'
dephy_file.reference='https://github.com/ARM-Development/comble-mip'
dephy_file.authors='Tomi Raatikainen (tomi.raatikainen@fmi.fi)'
dephy_file.source=exp_name
dephy_file.version=dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
dephy_file.format_version='DEPHY SCM format version 1.6'
dephy_file.script='convert_UCLALES-SALSA_output_to_dephy_format.ipynb'
dephy_file.startDate='2020-03-12T22:00:00Z'

# Additional note about microphysics
dephy_file.note=micro

# create dimensions
# x, y
nx = les_an.sizes['xt']
x = dephy_file.createDimension('x', nx)
x = dephy_file.createVariable('x', np.float64, ('x',))
x.units = 'm'
x.long_name = 'x'
x[:] = les_an['xt'].data

ny = les_an.sizes['yt']
y = dephy_file.createDimension('y', ny)
y = dephy_file.createVariable('y', np.float64, ('y',))
y.units = 'm'
y.long_name = 'y'
y[:] = les_an['yt'].data

# zf = dimension, altitude of mid-level points above sea surface = zf
nz = les_an.sizes['zt']-1
zf = dephy_file.createDimension('zf', nz)
zf = dephy_file.createVariable('zf', np.float64, ('zf',))
zf.units = 'm'
zf.long_name = 'altitude'
zf[:] = les_an['zt'][1:].data

# time
nt = les_an.sizes['time']
time = dephy_file.createDimension('time', nt)
time = dephy_file.createVariable('time', np.float64, ('time',))
time.units = 'seconds since ' + dephy_file.startDate
time.long_name = 'time'
time[:] = 5*np.floor(les_an['time'].data/5.) # Model time may exceed target time by 1 s

preci = np.float64 # Default
#preci = np.float32 # To save disc space

# create variables
for index in vars_3d_list.index[4:]:
    # Output
    std_name = vars_3d_list.iat[index,0]
    var_name = vars_3d_list.iat[index,1]
    new = dephy_file.createVariable(var_name, preci, ('time','x','y','zf'), zlib=True)
    new.units = vars_3d_list.units.iat[index]
    new.long_name = std_name
    try:
        dat,note=calc_an(std_name)
        # NA means no data
        if note=='NA':
            print('Ignoring '+std_name+' (no data)')
        else:
            new[:]=dat[:,:,:,1:] # Without z<0
            if len(note)>0: new.note=note
    except Exception as e:
        print('Failed: '+std_name,e)

print(dephy_file)

# Close all files
dephy_file.close()
les_an.close()
---------------------------------------------------------------------------
Exception                                 Traceback (most recent call last)
Cell In[13], line 2
      1 # Open source files
----> 2 if not os.path.exists(input_filename_an): raise Exception('File not found!')
      3 les_an = xr.open_dataset(input_filename_an)
      5 # create DEPHY output file

Exception: File not found!