Example: convert ModelE3 SCM output to DEPHY format#
Code to read ModelE3 output files and write to DEPHY format (NetCDF)
Contributed by Ann Fridlind from NASA/GISS
Import libraries#
import xarray as xr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import csv
import os
import netCDF4
import datetime as dt
from netCDF4 import Dataset
Specify directory locations#
If on the ARM JupyterHub, it is recommended to create and specify a local directory that is outside of the COMBLE-MIP repository to upload raw model output files in your model’s format.
Processed domain-mean outputs are invited for commit to the GitHub repository on a user-specified branch under /comble-mip/output_scm/YOUR_MODEL_NAME/sandbox/YOUR_OUTPUT_FILE_NAME. These can be committed and removed at any time.
If you are able to make a run without ice, it is requested to append ‘noice’ to YOUR_OUTPUT_FILE_NAME, so that it can readily be automatically compared with the baseline and other liquid-only runs.
# specify input and output file names: versions of ModelE3 with and without ice
# Phys
# my_input_suffix = 'entppe.nc'
# my_output_suffix = 'Phys_FixN_def_z0.nc'
# Phys without ice
# my_input_suffix = 'entppe_noice.nc'
# my_output_suffix = 'Phys_FixN_noice_def_z0.nc'
# Tun1
# my_input_suffix = 't698ml.nc'
# my_output_suffix = 'Tun1_FixN_def_z0.nc'
# Tun1 without ice
# my_input_suffix = 't698ml_noice.nc'
# my_output_suffix = 'Tun1_FixN_noice_def_z0.nc'
# Tun2
# my_input_suffix = 't705ml.nc'
# my_output_suffix = 'Tun2_FixN_def_z0.nc'
# Tun2 without ice
my_input_suffix = 't705ml_noice.nc'
my_output_suffix = 'Tun2_FixN_noice_def_z0.nc'
# specify local source directories (with subdirectories for spin up over ice and restart over water)
my_input_dir = '/data/home/fridlind/modelE3/'
# specify Github scratch directory where processed model output will be committed (automate later)
my_output_filename = 'ModelE3-' + my_output_suffix
my_gitdir = '../../output_scm/modelE/sandbox/'
Read ModelE3 data#
Read single file containing all output data#
Note: ERROR 1: PROJ… message can be ignored here.
input_filename = my_input_dir + '/allsteps.allmergeSCM_COMBLE-MIP_' + my_input_suffix
modele_data = xr.open_dataset(input_filename)
# check if the run contains ice variables
do_ice = bool(max(modele_data['iwp'].values)>0.)
print('do_ice = ',do_ice)
# full parameter list
modele_data
ERROR 1: PROJ: proj_create_from_database: Open of /opt/conda/share/proj failed
do_ice = False
<xarray.Dataset> Size: 1MB Dimensions: (lon: 1, lat: 1, time: 40, p: 110) Coordinates: * lon (lon) float32 4B 10.0 * lat (lat) float32 4B 74.5 * time (time) object 320B 2020-03-12 22:15:00 ... 2020-03-13 17... * p (p) float32 440B 979.0 969.0 959.0 ... 0.014 0.0075 0.0035 Data variables: (12/100) axyp (lat, lon) float32 4B ... prsurf (time, lat, lon) float32 160B ... gtempr (time, lat, lon) float32 160B ... shflx (time, lat, lon) float32 160B ... lhflx (time, lat, lon) float32 160B ... ustar (time, lat, lon) float32 160B ... ... ... vm_ssci (time, p, lat, lon) float32 18kB ... vm_sspi (time, p, lat, lon) float32 18kB ... vm_mccl (time, p, lat, lon) float32 18kB ... vm_mcpl (time, p, lat, lon) float32 18kB ... vm_mcci (time, p, lat, lon) float32 18kB ... vm_mcpi (time, p, lat, lon) float32 18kB ... Attributes: xlabel: SCM_COMBLE-MIP_t705ml_noice COMBLE-MIP Ent PPE (CAO case using ...
Calculate and append additional variables#
dummy_sca = modele_data['lwp']*0.
modele_data = modele_data.assign(clwpt = dummy_sca + modele_data['cLWPss'].data + modele_data['cLWPmc'].data)
modele_data = modele_data.assign(rlwpt = dummy_sca + modele_data['pLWPss'].data + modele_data['pLWPmc'].data)
if do_ice: modele_data = modele_data.assign(iwpt = dummy_sca + modele_data['cIWPss'].data + modele_data['cIWPmc'].data +
modele_data['pIWPss'].data + modele_data['pIWPmc'].data)
modele_data = modele_data.assign(tau = dummy_sca + modele_data['tau_ss'].data + modele_data['tau_mc'].data)
dummy_snd = modele_data['q']*0.
modele_data = modele_data.assign(rhobar = dummy_snd + 100.*modele_data['p_3d'].data/(287.05*modele_data['t'].data))
modele_data = modele_data.assign(qlc = dummy_snd + modele_data['qcl'].data + modele_data['QCLmc'].data)
modele_data = modele_data.assign(qlr = dummy_snd + modele_data['qpl'].data + modele_data['QPLmc'].data)
if do_ice: modele_data = modele_data.assign(qi = dummy_snd + modele_data['qci'].data + modele_data['qpi'].data +
modele_data['QCImc'].data + modele_data['QPImc'].data)
modele_data = modele_data.assign(lcf = dummy_snd + modele_data['cldsscl'].data + modele_data['cldmccl'].data)
modele_data['lcf'].values = np.clip(modele_data['lcf'].values,0.,1.)
modele_data = modele_data.assign(prt = dummy_snd + modele_data['ssp_cl_3d'].data + modele_data['ssp_pl_3d'].data + modele_data['rain_mc'].data)
if do_ice:
modele_data = modele_data.assign(pit = dummy_snd + modele_data['ssp_ci_3d'].data + modele_data['ssp_pi_3d'].data + modele_data['snow_mc'].data)
modele_data['prt'].data += modele_data['pit'].data
modele_data = modele_data.assign(dth_micro = dummy_snd + modele_data['dth_ss'].data + modele_data['dth_mc'].data)
modele_data = modele_data.assign(dq_micro = dummy_snd + modele_data['dq_ss'].data + modele_data['dq_mc'].data)
modele_data = modele_data.assign(wqt_turb = dummy_snd + modele_data['wq_turb'].data + modele_data['wql_turb'].data + modele_data['wqi_turb'].data)
Prepare output file in DEPHY format#
Read requested variables list#
Variable description, naming, units, and dimensions.
# read list of requested variables
vars_mean_list = pd.read_excel('https://docs.google.com/spreadsheets/d/1Vl8jYGviet7EtXZuQiitrx4NSkV1x27aJAhxxjBb9zI/export?gid=1026157027&format=xlsx',
sheet_name='SCM')
pd.set_option('display.max_rows', None)
vars_mean_list
standard_name | variable_id | units | dimensions | comment (reported at end of each model physics time step, green=minimum, red=granularity enabling EMC2) | |
---|---|---|---|---|---|
0 | time | time | s | – | dimension, seconds since 2020-03-12 18:00:00 |
1 | pressure_layer | layer | 1 | – | dimension, pressure layer number from 1 at sur... |
2 | air_pressure | pa | Pa | time, layer | pressure at mid-level points (native model lev... |
3 | layer_top_pressure | pe | Pa | time, layer | dimension, pressure at layer top points (used ... |
4 | surface_pressure | ps | Pa | time | – |
5 | surface_temperature | ts | K | time | – |
6 | surface_friction_velocity | ustar | m s-1 | time | – |
7 | surface_roughness_length_for_momentum_in_air | z0 | m | time | – |
8 | surface_roughness_length_for_heat_in_air | z0h | m | time | – |
9 | surface_roughness_length_for_humidity_in_air | z0q | m | time | – |
10 | surface_upward_sensible_heat_flux | hfss | W m-2 | time | – |
11 | surface_upward_latent_heat_flux | hfls | W m-2 | time | – |
12 | obukhov_length | ol | m | time | – |
13 | pbl_height | pblh | m | time | PBL scheme layer thickness (if available) |
14 | inversion_height | zi | m | time | sharpest vertical gradient in air_potential_te... |
15 | atmosphere_mass_content_of_liquid_cloud_water | lwpc | kg m-2 | time | scene (all sky); cloud water path in all class... |
16 | atmosphere_mass_content_of_rain_water | lwpr | kg m-2 | time | scene (all sky); rain water path in all classe... |
17 | atmosphere_mass_content_of_ice_water | iwp | kg m-2 | time | scene (all sky); all ice-phase hydrometeors in... |
18 | area_fraction_cover_of_hydrometeors | cf | 1 | time | all hydrometeors and cloud types (e.g., all ph... |
19 | area_fraction_cover_of_liquid_cloud | cflc | 1 | time | liquid cloud cover without precipitation, incl... |
20 | area_fraction_cover_of_convective_hydrometeors | cfc | 1 | time | all hydrometeors, default breakdown into conve... |
21 | optical_depth | od | 1 | time | scene (all sky); mid-visible, all hydrometeors... |
22 | optical_depth_of_liquid_cloud | odlc | 1 | time | scene (all sky); mid-visible, cloud liquid onl... |
23 | precipitation_flux_at_surface | pr | kg m-2 s-1 | time | scene (all sky); all hydrometeors |
24 | precipitation_flux_of_ice_at_surface | pri | kg m-2 s-1 | time | scene (all sky); all ice phase hydrometeors |
25 | toa_outgoing_longwave_flux | rlut | W m-2 | time | – |
26 | surface_downwelling_longwave_flux | rlds | W m-2 | time | – |
27 | surface_upwelling_longwave_flux | rlus | W m-2 | time | – |
28 | surface_sea_spray_number_flux | ssaf | m-2 s-1 | time | when using prognostic aerosol; emission only (... |
29 | height | zf | m | time, layer | altitude of layer mid-level points above sea s... |
30 | eastward_wind | ua | m s-1 | time, layer | – |
31 | northward_wind | va | m s-1 | time, layer | – |
32 | air_dry_density | rhoa | kg m-3 | time, layer | per kg dry air |
33 | air_temperature | ta | K | time, layer | – |
34 | water_vapor_mixing_ratio | qv | kg kg-1 | time, layer | – |
35 | relative_humidity | hur | 1 | time, layer | relative to liquid |
36 | relative_humidity_over_ice | huri | 1 | time, layer | relative to ice |
37 | air_potential_temperature | theta | K | time, layer | – |
38 | mass_mixing_ratio_of_cloud_liquid_water_in_air | qlc | kg kg-1 | time, layer | scene (all sky) per kg dry air; cloud water pa... |
39 | mass_mixing_ratio_of_rain_water_in_air | qlr | kg kg-1 | time, layer | rain water path only in all classes (e.g., con... |
40 | mass_mixing_ratio_of_ice_water_in_air | qi | kg kg-1 | time, layer | all ice water path in all classes (e.g., conve... |
41 | area_fraction_of_hydrometeors | fh | 1 | time, layer | all hydrometeors and cloud types (e.g., all ph... |
42 | area_fraction_of_liquid_cloud | flc | 1 | time, layer | liquid cloud cover without precipitation, incl... |
43 | area_fraction_of_convective_hydrometeors | fc | 1 | time, layer | all hydrometeors, default breakdown into conve... |
44 | precipitation_flux_in_air | prf | kg m-2 s-1 | time, layer | scene (all sky); all hydrometeors |
45 | precipitation_flux_in_air_in_ice_phase | prfi | kg m-2 s-1 | time, layer | scene (all sky); all ice phase hydrometeors |
46 | specific_turbulent_kinetic_energy | tke | m2 s-2 | time, layer | – |
47 | dissipation_rate_of_turbulent_kinetic_energy | eps | m2 s-3 | time, layer | report as negative |
48 | zonal_momentum_flux | uw | m2 s-2 | time, layer | parameterized turbulent flux |
49 | meridional_momentum_flux | vw | m2 s-2 | time, layer | parameterized turbulent flux |
50 | variance_of_upward_air_velocity | w2 | m2 s-2 | time, layer | parameterized turbulent flux |
51 | vertical_flux_potential_temperature | wth | K m s-1 | time, layer | parameterized turbulent flux |
52 | vertical_flux_liquid_ice_water_potential_tempe... | vf_thli | K m s-1 | time, layer | parameterized turbulent flux; include sediment... |
53 | vertical_flux_water_vapor | wqv | kg kg-1 m s-1 | time, layer | parameterized turbulent flux |
54 | vertical_flux_total_water | vf_qt | kg kg-1 m s-1 | time, layer | parameterized turbulent flux; vapor+all liquid... |
55 | convection_updraft_mass_flux | cmfu | kg m-2 s-1 | time, layer | – |
56 | convection_downdraft_mass_flux | cmfd | kg m-2 s-1 | time, layer | – |
57 | downwelling_longwave_flux_in_air | rld | W m-2 | time, layer | – |
58 | upwelling_longwave_flux_in_air | rlu | W m-2 | time, layer | – |
59 | tendency_of_air_potential_temperature_due_to_r... | dth_rad | K s-1 | time, layer | scene (all sky) |
60 | tendency_of_air_potential_temperature_due_to_m... | dth_micro | K s-1 | time, layer | including net condensation and precipitation i... |
61 | tendency_of_air_potential_temperature_due_to_m... | dth_turb | K s-1 | time, layer | including surface fluxes |
62 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_micro | s-1 | time, layer | including net condensation and precipitation i... |
63 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_turb | s-1 | time, layer | including surface fluxes |
64 | number_of_total_aerosol_mode1 | na1 | kg-1 | time, layer | when using prognostic aerosol; scene (all sky)... |
65 | number_of_total_aerosol_mode2 | na2 | kg-1 | time, layer | accumulation mode |
66 | number_of_total_aerosol_mode3 | na3 | kg-1 | time, layer | sea spray mode |
67 | tendency_of_aerosol_number_due_to_warm_microph... | dna_micro_warm | kg-1 s-1 | time, layer | activated and unactivated aerosol (sum over al... |
68 | tendency_of_aerosol_number_due_to_cold_microph... | dna_micro_cold | kg-1 s-1 | time, layer | activated and unactivated aerosol (sum over al... |
69 | tendency_of_aerosol_number_due_to_mixing | dna_turb | kg-1 s-1 | time, layer | activated and unactivated aerosol (sum over al... |
70 | tendency_of_ice_number_due_to_heterogeneous_fr... | dni_het | kg-1 s-1 | time, layer | sum of primary ice nucleation due to activatio... |
71 | tendency_of_ice_number_due_to_secondary_ice_pr... | dni_sip | kg-1 s-1 | time, layer | sum of secondary ice formation processes (e.g.... |
72 | tendency_of_ice_number_due_to_homogeneous_free... | dni_hom | kg-1 s-1 | time, layer | ice nucleation source due to homogoeneous free... |
73 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcs | kg kg-1 | time, layer | scene (all sky) per kg dry air; default breakd... |
74 | mass_mixing_ratio_of_rain_water_in_air_stratiform | qlrs | kg kg-1 | time, layer | – |
75 | mass_mixing_ratio_of_ice_cloud_in_air_stratiform | qics | kg kg-1 | time, layer | default breakdown as for liquid; if other ice-... |
76 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qips | kg kg-1 | time, layer | – |
77 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcc | kg kg-1 | time, layer | – |
78 | mass_mixing_ratio_of_rain_water_in_air_convective | qlrc | kg kg-1 | time, layer | – |
79 | mass_mixing_ratio_of_ice_cloud_in_air_convective | qicc | kg kg-1 | time, layer | – |
80 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qipc | kg kg-1 | time, layer | – |
81 | number_of_liquid_cloud_droplets_in_air_stratiform | nlcs | kg-1 | time, layer | scene (all sky) per kg dry air; if other categ... |
82 | number_of_rain_drops_in_air_stratiform | nlrs | kg-1 | time, layer | – |
83 | number_of_ice_cloud_crystals_in_air_stratiform | nics | kg-1 | time, layer | if other ice-phase categories are used, provid... |
84 | number_of_ice_precipitation_crystals_in_air_st... | nips | kg-1 | time, layer | – |
85 | effective_radius_of_liquid_cloud_droplets_conv... | relcc | m | time, layer | EMC2 uses effective radius for any hydrometeor... |
86 | effective_radius_of_rain_convective | relrc | m | time, layer | – |
87 | effective_radius_of_ice_cloud_convective | reicc | m | time, layer | – |
88 | effective_radius_of_ice_precipitation_convective | reipc | m | time, layer | – |
89 | area_fraction_of_liquid_cloud_stratiform | flcs | 1 | time, layer | EMC2 uses area fraction profiles for all hydro... |
90 | area_fraction_of_rain_stratiform | flrs | 1 | time, layer | – |
91 | area_fraction_of_ice_cloud_stratiform | fics | 1 | time, layer | if other ice categories are used, provide addi... |
92 | area_fraction_of_ice_precipitation_stratiform | fips | 1 | time, layer | – |
93 | area_fraction_of_liquid_cloud_convective | flcc | 1 | time, layer | – |
94 | area_fraction_of_rain_convective | flrc | 1 | time, layer | – |
95 | area_fraction_of_ice_cloud_convective | ficc | 1 | time, layer | – |
96 | area_fraction_of_ice_precipitation_convective | fipc | 1 | time, layer | – |
97 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcs | m s-1 | time, layer | EMC2 uses mass-weighted fall-speed profiles fo... |
98 | mass_weighted_fall_speed_of_rain_stratiform | vmlrs | m s-1 | time, layer | – |
99 | mass_weighted_fall_speed_of_ice_cloud_stratiform | vmics | m s-1 | time, layer | if other ice-phase categories are used, provid... |
100 | mass_weighted_fall_speed_of_ice_precipitation_... | vmips | m s-1 | time, layer | – |
101 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcc | m s-1 | time, layer | – |
102 | mass_weighted_fall_speed_of_rain_convective | vmlrc | m s-1 | time, layer | – |
103 | mass_weighted_fall_speed_of_cloud_ice_crystals... | vmicc | m s-1 | time, layer | – |
104 | mass_weighted_fall_speed_of_ice_precipitation_... | vmipc | m s-1 | time, layer | – |
Match ModelE3 variables to requested outputs#
Expand the table to include columns that indicate ModelE3 model variable names and any conversion factor.
# drop comments
vars_mean_list = vars_mean_list.drop(columns='comment (reported at end of each model physics time step, green=minimum, red=granularity enabling EMC2)')
# add columns to contain model output name and units conversion factors
vars_mean_list = vars_mean_list.assign(model_name='missing data',conv_factor=1.0)
# match to ModelE3 variable names and specify conversion factors
for index in vars_mean_list.index:
standard_name = vars_mean_list.standard_name.iat[index]
if standard_name=='air_pressure':
vars_mean_list.model_name.iat[index] = 'p_3d'
# if standard_name=='layer_top_pressure':
# vars_mean_list.model_name.iat[index] = 'pe_t'
if standard_name=='surface_pressure':
vars_mean_list.model_name.iat[index] = 'prsurf'
vars_mean_list.conv_factor.iat[index] = 100.
if standard_name=='surface_temperature':
vars_mean_list.model_name.iat[index] = 'gtempr'
if standard_name=='surface_friction_velocity':
vars_mean_list.model_name.iat[index] = 'ustar'
# if standard_name=='surface_roughness_length_for_momentum_in_air':
# vars_mean_list.model_name.iat[index] = 'z0m'
# if standard_name=='surface_roughness_length_for_heat_in_air':
# vars_mean_list.model_name.iat[index] = 'z0h'
# if standard_name=='surface_roughness_length_for_humidity_in_air':
# vars_mean_list.model_name.iat[index] = 'z0q'
if standard_name=='surface_upward_sensible_heat_flux':
vars_mean_list.model_name.iat[index] = 'shflx'
vars_mean_list.conv_factor.iat[index] = -1.
if standard_name=='surface_upward_latent_heat_flux':
vars_mean_list.model_name.iat[index] = 'lhflx'
vars_mean_list.conv_factor.iat[index] = -1.
if standard_name=='obukhov_length':
vars_mean_list.model_name.iat[index] = 'lmonin'
if standard_name=='pbl_height':
vars_mean_list.model_name.iat[index] = 'pblht_bp'
if standard_name=='inversion_height':
vars_mean_list.model_name.iat[index] = 'pblht_th'
if standard_name=='atmosphere_mass_content_of_liquid_cloud_water':
vars_mean_list.model_name.iat[index] = 'clwpt'
vars_mean_list.conv_factor.iat[index] = 0.001
if standard_name=='atmosphere_mass_content_of_rain_water':
vars_mean_list.model_name.iat[index] = 'rlwpt'
vars_mean_list.conv_factor.iat[index] = 0.001
if do_ice:
if standard_name=='atmosphere_mass_content_of_ice_water':
vars_mean_list.model_name.iat[index] = 'iwpt'
vars_mean_list.conv_factor.iat[index] = 0.001
if standard_name=='area_fraction_cover_of_hydrometeors':
vars_mean_list.model_name.iat[index] = 'cldtot_2d'
# if standard_name=='area_fraction_cover_of_liquid_cloud':
# vars_mean_list.model_name.iat[index] = ''
if standard_name=='area_fraction_cover_of_convective_hydrometeors':
vars_mean_list.model_name.iat[index] = 'cldmc_2d'
if standard_name=='optical_depth':
vars_mean_list.model_name.iat[index] = 'tau'
# if standard_name=='optical_depth_of_liquid_water':
# vars_mean_list.model_name.iat[index] = ''
if standard_name=='precipitation_flux_at_surface':
vars_mean_list.model_name.iat[index] = 'prec'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='precipitation_flux_of_ice_at_surface':
vars_mean_list.model_name.iat[index] = 'snowfall'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='toa_outgoing_longwave_flux':
vars_mean_list.model_name.iat[index] = 'olr'
if standard_name=='surface_downwelling_longwave_flux':
vars_mean_list.model_name.iat[index] = 'lwds'
if standard_name=='surface_upwelling_longwave_flux':
vars_mean_list.model_name.iat[index] = 'lwus'
if standard_name=='height':
vars_mean_list.model_name.iat[index] = 'z'
if standard_name=='eastward_wind':
vars_mean_list.model_name.iat[index] = 'u'
if standard_name=='northward_wind':
vars_mean_list.model_name.iat[index] = 'v'
if standard_name=='air_dry_density':
vars_mean_list.model_name.iat[index] = 'rhobar'
if standard_name=='air_temperature':
vars_mean_list.model_name.iat[index] = 't'
if standard_name=='water_vapor_mixing_ratio':
vars_mean_list.model_name.iat[index] = 'q'
if standard_name=='relative_humidity':
vars_mean_list.model_name.iat[index] = 'rhw'
vars_mean_list.conv_factor.iat[index] = 0.01
if standard_name=='relative_humidity_over_ice':
vars_mean_list.model_name.iat[index] = 'rhi'
vars_mean_list.conv_factor.iat[index] = 0.01
if standard_name=='air_potential_temperature':
vars_mean_list.model_name.iat[index] = 'th'
if standard_name=='mass_mixing_ratio_of_cloud_liquid_water_in_air':
vars_mean_list.model_name.iat[index] = 'qlc'
if standard_name=='mass_mixing_ratio_of_rain_water_in_air':
vars_mean_list.model_name.iat[index] = 'qlr'
if do_ice:
if standard_name=='mass_mixing_ratio_of_ice_water_in_air':
vars_mean_list.model_name.iat[index] = 'qi'
if standard_name=='area_fraction_of_hydrometeors':
vars_mean_list.model_name.iat[index] = 'cfr'
if standard_name=='area_fraction_of_liquid_cloud':
vars_mean_list.model_name.iat[index] = 'lcf'
if standard_name=='area_fraction_of_convective_hydrometeors':
vars_mean_list.model_name.iat[index] = 'cldmcr'
if standard_name=='precipitation_flux_in_air':
vars_mean_list.model_name.iat[index] = 'prt'
vars_mean_list.conv_factor.iat[index] = 1./86400
if do_ice:
if standard_name=='precipitation_flux_in_air_in_ice_phase':
vars_mean_list.model_name.iat[index] = 'pit'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='specific_turbulent_kinetic_energy':
vars_mean_list.model_name.iat[index] = 'e_turb'
if standard_name=='disspation_rate_of_turbulent_kinetic_energy':
vars_mean_list.model_name.iat[index] = 'dissip_tke_turb'
vars_mean_list.conv_factor.iat[index] = -1.
if standard_name=='zonal_momentum_flux':
vars_mean_list.model_name.iat[index] = 'uw_turb'
if standard_name=='meridional_momentum_flux':
vars_mean_list.model_name.iat[index] = 'vw_turb'
if standard_name=='variance_of_upward_air_velocity':
vars_mean_list.model_name.iat[index] = 'w2_turb'
if standard_name=='vertical_flux_potential_temperature':
vars_mean_list.model_name.iat[index] = 'wth_turb'
# if standard_name=='vertical_flux_liquid_water_potential_temperature':
# vars_mean_list.model_name.iat[index] = ''
if standard_name=='vertical_flux_water_vapor':
vars_mean_list.model_name.iat[index] = 'wq_turb'
if standard_name=='vertical_flux_total_water':
vars_mean_list.model_name.iat[index] = 'wqt_turb'
if standard_name=='convection_updraft_mass_flux':
vars_mean_list.model_name.iat[index] = 'lwdp'
if standard_name=='convection_downdraft_mass_flux':
vars_mean_list.model_name.iat[index] = 'lwdp'
if standard_name=='downwelling_longwave_flux_in_air':
vars_mean_list.model_name.iat[index] = 'lwdp'
if standard_name=='upwelling_longwave_flux_in_air':
vars_mean_list.model_name.iat[index] = 'lwup'
if standard_name=='tendency_of_air_potential_temperature_due_to_radiative_heating':
vars_mean_list.model_name.iat[index] = 'dth_lw'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='tendency_of_air_potential_temperature_due_to_microphysics':
vars_mean_list.model_name.iat[index] = 'dth_micro'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='tendency_of_air_potential_temperature_due_to_mixing':
vars_mean_list.model_name.iat[index] = 'dth_turb'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='tendency_of_water_vapor_mixing_ratio_due_to_microphysics':
vars_mean_list.model_name.iat[index] = 'dq_micro'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='tendency_of_water_vapor_mixing_ratio_due_to_mixing':
vars_mean_list.model_name.iat[index] = 'dq_turb'
vars_mean_list.conv_factor.iat[index] = 1./86400
if standard_name=='mass_mixing_ratio_of_liquid_cloud_water_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'qcl'
if standard_name=='mass_mixing_ratio_of_rain_water_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'qpl'
if do_ice:
if standard_name=='mass_mixing_ratio_of_ice_cloud_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'qci'
if standard_name=='mass_mixing_ratio_of_ice_precipitation_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'qpi'
if standard_name=='mass_mixing_ratio_of_liquid_cloud_water_in_air_convective':
vars_mean_list.model_name.iat[index] = 'QCLmc'
if standard_name=='mass_mixing_ratio_of_rain_water_in_air_convective':
vars_mean_list.model_name.iat[index] = 'QPLmc'
if do_ice:
if standard_name=='mass_mixing_ratio_of_ice_cloud_in_air_convective':
vars_mean_list.model_name.iat[index] = 'QCImc'
if standard_name=='mass_mixing_ratio_of_ice_precipitation_in_air_convective':
vars_mean_list.model_name.iat[index] = 'QPImc'
if standard_name=='number_of_liquid_cloud_droplets_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'ncl'
if standard_name=='number_of_rain_drops_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'npl'
if do_ice:
if standard_name=='number_of_ice_cloud_crystals_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'nci'
if standard_name=='number_of_ice_precipitation_crystals_in_air_stratiform':
vars_mean_list.model_name.iat[index] = 'npi'
if standard_name=='effective_radius_of_liquid_cloud_droplets_convective':
vars_mean_list.model_name.iat[index] = 're_mccl'
if standard_name=='effective_radius_of_rain_convective':
vars_mean_list.model_name.iat[index] = 're_mcpl'
if do_ice:
if standard_name=='effective_radius_of_ice_cloud_convective':
vars_mean_list.model_name.iat[index] = 're_mcci'
if standard_name=='effective_radius_of_ice_precipitation_convective':
vars_mean_list.model_name.iat[index] = 're_mcpi'
if standard_name=='area_fraction_of_liquid_cloud_stratiform':
vars_mean_list.model_name.iat[index] = 'cldsscl'
if standard_name=='area_fraction_of_rain_stratiform':
vars_mean_list.model_name.iat[index] = 'cldsspl'
if do_ice:
if standard_name=='area_fraction_of_ice_cloud_stratiform':
vars_mean_list.model_name.iat[index] = 'cldssci'
if standard_name=='area_fraction_of_ice_precipitation_stratiform':
vars_mean_list.model_name.iat[index] = 'cldsspi'
if standard_name=='area_fraction_of_liquid_cloud_convective':
vars_mean_list.model_name.iat[index] = 'cldmccl'
if standard_name=='area_fraction_of_rain_convective':
vars_mean_list.model_name.iat[index] = 'cldmcpl'
if do_ice:
if standard_name=='area_fraction_of_ice_cloud_convective':
vars_mean_list.model_name.iat[index] = 'cldmcci'
if standard_name=='area_fraction_of_ice_precipitation_convective':
vars_mean_list.model_name.iat[index] = 'cldmcpi'
if standard_name=='mass_weighted_fall_speed_of_liquid_cloud_water_stratiform':
vars_mean_list.model_name.iat[index] = 'vm_sscl'
if standard_name=='mass_weighted_fall_speed_of_rain_stratiform':
vars_mean_list.model_name.iat[index] = 'vm_sspl'
if do_ice:
if standard_name=='mass_weighted_fall_speed_of_ice_cloud_stratiform':
vars_mean_list.model_name.iat[index] = 'vm_ssci'
if standard_name=='mass_weighted_fall_speed_of_ice_precipitation_stratiform':
vars_mean_list.model_name.iat[index] = 'vm_sspi'
if standard_name=='mass_weighted_fall_speed_of_liquid_cloud_water_convective':
vars_mean_list.model_name.iat[index] = 'vm_mccl'
if standard_name=='mass_weighted_fall_speed_of_rain_convective':
vars_mean_list.model_name.iat[index] = 'vm_mcpl'
if do_ice:
if standard_name=='mass_weighted_fall_speed_of_cloud_ice_crystals_convective':
vars_mean_list.model_name.iat[index] = 'vm_mcci'
if standard_name=='mass_weighted_fall_speed_of_ice_precipitation_convective':
vars_mean_list.model_name.iat[index] = 'vm_mcpi'
vars_mean_list[2:] # echo variables (first two rows are dimensions)
standard_name | variable_id | units | dimensions | model_name | conv_factor | |
---|---|---|---|---|---|---|
2 | air_pressure | pa | Pa | time, layer | p_3d | 1.000000 |
3 | layer_top_pressure | pe | Pa | time, layer | missing data | 1.000000 |
4 | surface_pressure | ps | Pa | time | prsurf | 100.000000 |
5 | surface_temperature | ts | K | time | gtempr | 1.000000 |
6 | surface_friction_velocity | ustar | m s-1 | time | ustar | 1.000000 |
7 | surface_roughness_length_for_momentum_in_air | z0 | m | time | missing data | 1.000000 |
8 | surface_roughness_length_for_heat_in_air | z0h | m | time | missing data | 1.000000 |
9 | surface_roughness_length_for_humidity_in_air | z0q | m | time | missing data | 1.000000 |
10 | surface_upward_sensible_heat_flux | hfss | W m-2 | time | shflx | -1.000000 |
11 | surface_upward_latent_heat_flux | hfls | W m-2 | time | lhflx | -1.000000 |
12 | obukhov_length | ol | m | time | lmonin | 1.000000 |
13 | pbl_height | pblh | m | time | pblht_bp | 1.000000 |
14 | inversion_height | zi | m | time | pblht_th | 1.000000 |
15 | atmosphere_mass_content_of_liquid_cloud_water | lwpc | kg m-2 | time | clwpt | 0.001000 |
16 | atmosphere_mass_content_of_rain_water | lwpr | kg m-2 | time | rlwpt | 0.001000 |
17 | atmosphere_mass_content_of_ice_water | iwp | kg m-2 | time | missing data | 1.000000 |
18 | area_fraction_cover_of_hydrometeors | cf | 1 | time | cldtot_2d | 1.000000 |
19 | area_fraction_cover_of_liquid_cloud | cflc | 1 | time | missing data | 1.000000 |
20 | area_fraction_cover_of_convective_hydrometeors | cfc | 1 | time | cldmc_2d | 1.000000 |
21 | optical_depth | od | 1 | time | tau | 1.000000 |
22 | optical_depth_of_liquid_cloud | odlc | 1 | time | missing data | 1.000000 |
23 | precipitation_flux_at_surface | pr | kg m-2 s-1 | time | prec | 0.000012 |
24 | precipitation_flux_of_ice_at_surface | pri | kg m-2 s-1 | time | snowfall | 0.000012 |
25 | toa_outgoing_longwave_flux | rlut | W m-2 | time | olr | 1.000000 |
26 | surface_downwelling_longwave_flux | rlds | W m-2 | time | lwds | 1.000000 |
27 | surface_upwelling_longwave_flux | rlus | W m-2 | time | lwus | 1.000000 |
28 | surface_sea_spray_number_flux | ssaf | m-2 s-1 | time | missing data | 1.000000 |
29 | height | zf | m | time, layer | z | 1.000000 |
30 | eastward_wind | ua | m s-1 | time, layer | u | 1.000000 |
31 | northward_wind | va | m s-1 | time, layer | v | 1.000000 |
32 | air_dry_density | rhoa | kg m-3 | time, layer | rhobar | 1.000000 |
33 | air_temperature | ta | K | time, layer | t | 1.000000 |
34 | water_vapor_mixing_ratio | qv | kg kg-1 | time, layer | q | 1.000000 |
35 | relative_humidity | hur | 1 | time, layer | rhw | 0.010000 |
36 | relative_humidity_over_ice | huri | 1 | time, layer | rhi | 0.010000 |
37 | air_potential_temperature | theta | K | time, layer | th | 1.000000 |
38 | mass_mixing_ratio_of_cloud_liquid_water_in_air | qlc | kg kg-1 | time, layer | qlc | 1.000000 |
39 | mass_mixing_ratio_of_rain_water_in_air | qlr | kg kg-1 | time, layer | qlr | 1.000000 |
40 | mass_mixing_ratio_of_ice_water_in_air | qi | kg kg-1 | time, layer | missing data | 1.000000 |
41 | area_fraction_of_hydrometeors | fh | 1 | time, layer | cfr | 1.000000 |
42 | area_fraction_of_liquid_cloud | flc | 1 | time, layer | lcf | 1.000000 |
43 | area_fraction_of_convective_hydrometeors | fc | 1 | time, layer | cldmcr | 1.000000 |
44 | precipitation_flux_in_air | prf | kg m-2 s-1 | time, layer | prt | 0.000012 |
45 | precipitation_flux_in_air_in_ice_phase | prfi | kg m-2 s-1 | time, layer | missing data | 1.000000 |
46 | specific_turbulent_kinetic_energy | tke | m2 s-2 | time, layer | e_turb | 1.000000 |
47 | dissipation_rate_of_turbulent_kinetic_energy | eps | m2 s-3 | time, layer | missing data | 1.000000 |
48 | zonal_momentum_flux | uw | m2 s-2 | time, layer | uw_turb | 1.000000 |
49 | meridional_momentum_flux | vw | m2 s-2 | time, layer | vw_turb | 1.000000 |
50 | variance_of_upward_air_velocity | w2 | m2 s-2 | time, layer | w2_turb | 1.000000 |
51 | vertical_flux_potential_temperature | wth | K m s-1 | time, layer | wth_turb | 1.000000 |
52 | vertical_flux_liquid_ice_water_potential_tempe... | vf_thli | K m s-1 | time, layer | missing data | 1.000000 |
53 | vertical_flux_water_vapor | wqv | kg kg-1 m s-1 | time, layer | wq_turb | 1.000000 |
54 | vertical_flux_total_water | vf_qt | kg kg-1 m s-1 | time, layer | wqt_turb | 1.000000 |
55 | convection_updraft_mass_flux | cmfu | kg m-2 s-1 | time, layer | lwdp | 1.000000 |
56 | convection_downdraft_mass_flux | cmfd | kg m-2 s-1 | time, layer | lwdp | 1.000000 |
57 | downwelling_longwave_flux_in_air | rld | W m-2 | time, layer | lwdp | 1.000000 |
58 | upwelling_longwave_flux_in_air | rlu | W m-2 | time, layer | lwup | 1.000000 |
59 | tendency_of_air_potential_temperature_due_to_r... | dth_rad | K s-1 | time, layer | dth_lw | 0.000012 |
60 | tendency_of_air_potential_temperature_due_to_m... | dth_micro | K s-1 | time, layer | dth_micro | 0.000012 |
61 | tendency_of_air_potential_temperature_due_to_m... | dth_turb | K s-1 | time, layer | dth_turb | 0.000012 |
62 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_micro | s-1 | time, layer | dq_micro | 0.000012 |
63 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_turb | s-1 | time, layer | dq_turb | 0.000012 |
64 | number_of_total_aerosol_mode1 | na1 | kg-1 | time, layer | missing data | 1.000000 |
65 | number_of_total_aerosol_mode2 | na2 | kg-1 | time, layer | missing data | 1.000000 |
66 | number_of_total_aerosol_mode3 | na3 | kg-1 | time, layer | missing data | 1.000000 |
67 | tendency_of_aerosol_number_due_to_warm_microph... | dna_micro_warm | kg-1 s-1 | time, layer | missing data | 1.000000 |
68 | tendency_of_aerosol_number_due_to_cold_microph... | dna_micro_cold | kg-1 s-1 | time, layer | missing data | 1.000000 |
69 | tendency_of_aerosol_number_due_to_mixing | dna_turb | kg-1 s-1 | time, layer | missing data | 1.000000 |
70 | tendency_of_ice_number_due_to_heterogeneous_fr... | dni_het | kg-1 s-1 | time, layer | missing data | 1.000000 |
71 | tendency_of_ice_number_due_to_secondary_ice_pr... | dni_sip | kg-1 s-1 | time, layer | missing data | 1.000000 |
72 | tendency_of_ice_number_due_to_homogeneous_free... | dni_hom | kg-1 s-1 | time, layer | missing data | 1.000000 |
73 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcs | kg kg-1 | time, layer | qcl | 1.000000 |
74 | mass_mixing_ratio_of_rain_water_in_air_stratiform | qlrs | kg kg-1 | time, layer | qpl | 1.000000 |
75 | mass_mixing_ratio_of_ice_cloud_in_air_stratiform | qics | kg kg-1 | time, layer | missing data | 1.000000 |
76 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qips | kg kg-1 | time, layer | missing data | 1.000000 |
77 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcc | kg kg-1 | time, layer | QCLmc | 1.000000 |
78 | mass_mixing_ratio_of_rain_water_in_air_convective | qlrc | kg kg-1 | time, layer | QPLmc | 1.000000 |
79 | mass_mixing_ratio_of_ice_cloud_in_air_convective | qicc | kg kg-1 | time, layer | missing data | 1.000000 |
80 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qipc | kg kg-1 | time, layer | missing data | 1.000000 |
81 | number_of_liquid_cloud_droplets_in_air_stratiform | nlcs | kg-1 | time, layer | ncl | 1.000000 |
82 | number_of_rain_drops_in_air_stratiform | nlrs | kg-1 | time, layer | npl | 1.000000 |
83 | number_of_ice_cloud_crystals_in_air_stratiform | nics | kg-1 | time, layer | missing data | 1.000000 |
84 | number_of_ice_precipitation_crystals_in_air_st... | nips | kg-1 | time, layer | missing data | 1.000000 |
85 | effective_radius_of_liquid_cloud_droplets_conv... | relcc | m | time, layer | re_mccl | 1.000000 |
86 | effective_radius_of_rain_convective | relrc | m | time, layer | re_mcpl | 1.000000 |
87 | effective_radius_of_ice_cloud_convective | reicc | m | time, layer | missing data | 1.000000 |
88 | effective_radius_of_ice_precipitation_convective | reipc | m | time, layer | missing data | 1.000000 |
89 | area_fraction_of_liquid_cloud_stratiform | flcs | 1 | time, layer | cldsscl | 1.000000 |
90 | area_fraction_of_rain_stratiform | flrs | 1 | time, layer | cldsspl | 1.000000 |
91 | area_fraction_of_ice_cloud_stratiform | fics | 1 | time, layer | missing data | 1.000000 |
92 | area_fraction_of_ice_precipitation_stratiform | fips | 1 | time, layer | missing data | 1.000000 |
93 | area_fraction_of_liquid_cloud_convective | flcc | 1 | time, layer | cldmccl | 1.000000 |
94 | area_fraction_of_rain_convective | flrc | 1 | time, layer | cldmcpl | 1.000000 |
95 | area_fraction_of_ice_cloud_convective | ficc | 1 | time, layer | missing data | 1.000000 |
96 | area_fraction_of_ice_precipitation_convective | fipc | 1 | time, layer | missing data | 1.000000 |
97 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcs | m s-1 | time, layer | vm_sscl | 1.000000 |
98 | mass_weighted_fall_speed_of_rain_stratiform | vmlrs | m s-1 | time, layer | vm_sspl | 1.000000 |
99 | mass_weighted_fall_speed_of_ice_cloud_stratiform | vmics | m s-1 | time, layer | missing data | 1.000000 |
100 | mass_weighted_fall_speed_of_ice_precipitation_... | vmips | m s-1 | time, layer | missing data | 1.000000 |
101 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcc | m s-1 | time, layer | vm_mccl | 1.000000 |
102 | mass_weighted_fall_speed_of_rain_convective | vmlrc | m s-1 | time, layer | vm_mcpl | 1.000000 |
103 | mass_weighted_fall_speed_of_cloud_ice_crystals... | vmicc | m s-1 | time, layer | missing data | 1.000000 |
104 | mass_weighted_fall_speed_of_ice_precipitation_... | vmipc | m s-1 | time, layer | missing data | 1.000000 |
Create DEPHY output file#
Write a single file to contain all domain-mean scalar and profile outputs. This code expects the write directory to be pre-existing (already created by the user). In the case that this output will be committed to the comble-mip GitHub repository, see above “Specify directory locations”.
# create DEPHY output file
dephy_filename = './' + my_gitdir + my_output_filename
if os.path.exists(dephy_filename):
os.remove(dephy_filename)
print('The file ' + dephy_filename + ' has been deleted successfully')
dephy_file = Dataset(dephy_filename,mode='w',format='NETCDF3_CLASSIC')
start_date = '2020-03-12T22:00:00Z'
# create global attributes
dephy_file.title='ModelE3 SCM results for COMBLE-MIP case: fixed stratiform Nd and Ni'
dephy_file.reference='https://github.com/ARM-Development/comble-mip'
dephy_file.authors='Ann Fridlind (ann.fridlind@nasa.gov), Florian Tornow (florian.tornow@nasa.gov), Andrew Ackerman (andrew.ackerman@nasa.gov)'
dephy_file.source=input_filename
dephy_file.version=dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
dephy_file.format_version='DEPHY SCM format version 1.6'
dephy_file.script='convert_ModelE3_SCM_output_to_dephy_format.ipynb'
dephy_file.startDate=start_date
dephy_file.force_geo=1
dephy_file.surfaceType='ocean'
dephy_file.surfaceForcing='ts'
dephy_file.lat='74.5 deg N'
dephy_file.dp='see pressure variable'
dephy_file.np=modele_data.sizes['p']
# create dimensions
nt = modele_data.sizes['time']
time = dephy_file.createDimension('time', nt)
time = dephy_file.createVariable('time', np.float64, ('time',))
time.units = 'seconds since ' + dephy_file.startDate
time.long_name = 'time'
# find time step and build time in seconds
time1 = dt.datetime.strptime(str(modele_data['time'].data[0]),'%Y-%m-%d %H:%M:%S')
time2 = dt.datetime.strptime(str(modele_data['time'].data[1]),'%Y-%m-%d %H:%M:%S')
delta_t = (time2-time1).total_seconds()
time[:] = (np.arange(nt)+1.)*delta_t
nl = modele_data.sizes['p']
layer = dephy_file.createDimension('layer', nl)
layer = dephy_file.createVariable('layer', np.float64, ('layer',))
layer.units = '1'
layer.long_name = 'pressure_layer'
layer[:] = np.arange(nl)+1
# create and fill variables
for index in vars_mean_list.index[2:]:
std_name = vars_mean_list.standard_name.iat[index]
# print(std_name) # debug
var_name = vars_mean_list.variable_id.iat[index]
mod_name = vars_mean_list.model_name.iat[index]
c_factor = vars_mean_list.conv_factor.iat[index]
if vars_mean_list.dimensions.iat[index]=='time':
new_sca = dephy_file.createVariable(var_name, np.float64, ('time'))
new_sca.units = vars_mean_list.units.iat[index]
new_sca.long_name = std_name
if vars_mean_list.model_name.iat[index]!='missing data':
new_sca[:] = modele_data[mod_name].data*c_factor
if vars_mean_list.dimensions.iat[index]=='time, layer':
new_snd = dephy_file.createVariable(var_name, np.float64, ('time','layer'))
new_snd.units = vars_mean_list.units.iat[index]
new_snd.long_name = std_name
if vars_mean_list.model_name.iat[index]!='missing data':
new_snd[:] = modele_data[mod_name].data*c_factor
print(dephy_file)
dephy_file.close()
The file ./../../output_scm/modelE/sandbox/ModelE3-Tun2_FixN_noice_def_z0.nc has been deleted successfully
<class 'netCDF4._netCDF4.Dataset'>
root group (NETCDF3_CLASSIC data model, file format NETCDF3):
title: ModelE3 SCM results for COMBLE-MIP case: fixed stratiform Nd and Ni
reference: https://github.com/ARM-Development/comble-mip
authors: Ann Fridlind (ann.fridlind@nasa.gov), Florian Tornow (florian.tornow@nasa.gov), Andrew Ackerman (andrew.ackerman@nasa.gov)
source: /data/home/fridlind/modelE3//allsteps.allmergeSCM_COMBLE-MIP_t705ml_noice.nc
version: 2024-05-21 23:04:13
format_version: DEPHY SCM format version 1.6
script: convert_ModelE3_SCM_output_to_dephy_format.ipynb
startDate: 2020-03-12T22:00:00Z
force_geo: 1
surfaceType: ocean
surfaceForcing: ts
lat: 74.5 deg N
dp: see pressure variable
np: 110
dimensions(sizes): time(40), layer(110)
variables(dimensions): float64 time(time), float64 layer(layer), float64 pa(time, layer), float64 pe(time, layer), float64 ps(time), float64 ts(time), float64 ustar(time), float64 z0(time), float64 z0h(time), float64 z0q(time), float64 hfss(time), float64 hfls(time), float64 ol(time), float64 pblh(time), float64 zi(time), float64 lwpc(time), float64 lwpr(time), float64 iwp(time), float64 cf(time), float64 cflc(time), float64 cfc(time), float64 od(time), float64 odlc(time), float64 pr(time), float64 pri(time), float64 rlut(time), float64 rlds(time), float64 rlus(time), float64 ssaf(time), float64 zf(time, layer), float64 ua(time, layer), float64 va(time, layer), float64 rhoa(time, layer), float64 ta(time, layer), float64 qv(time, layer), float64 hur(time, layer), float64 huri(time, layer), float64 theta(time, layer), float64 qlc(time, layer), float64 qlr(time, layer), float64 qi(time, layer), float64 fh(time, layer), float64 flc(time, layer), float64 fc(time, layer), float64 prf(time, layer), float64 prfi(time, layer), float64 tke(time, layer), float64 eps(time, layer), float64 uw(time, layer), float64 vw(time, layer), float64 w2(time, layer), float64 wth(time, layer), float64 vf_thli(time, layer), float64 wqv(time, layer), float64 vf_qt(time, layer), float64 cmfu(time, layer), float64 cmfd(time, layer), float64 rld(time, layer), float64 rlu(time, layer), float64 dth_rad(time, layer), float64 dth_micro(time, layer), float64 dth_turb(time, layer), float64 dq_micro(time, layer), float64 dq_turb(time, layer), float64 na1(time, layer), float64 na2(time, layer), float64 na3(time, layer), float64 dna_micro_warm(time, layer), float64 dna_micro_cold(time, layer), float64 dna_turb(time, layer), float64 dni_het(time, layer), float64 dni_sip(time, layer), float64 dni_hom(time, layer), float64 qlcs(time, layer), float64 qlrs(time, layer), float64 qics(time, layer), float64 qips(time, layer), float64 qlcc(time, layer), float64 qlrc(time, layer), float64 qicc(time, layer), float64 qipc(time, layer), float64 nlcs(time, layer), float64 nlrs(time, layer), float64 nics(time, layer), float64 nips(time, layer), float64 relcc(time, layer), float64 relrc(time, layer), float64 reicc(time, layer), float64 reipc(time, layer), float64 flcs(time, layer), float64 flrs(time, layer), float64 fics(time, layer), float64 fips(time, layer), float64 flcc(time, layer), float64 flrc(time, layer), float64 ficc(time, layer), float64 fipc(time, layer), float64 vmlcs(time, layer), float64 vmlrs(time, layer), float64 vmics(time, layer), float64 vmips(time, layer), float64 vmlcc(time, layer), float64 vmlrc(time, layer), float64 vmicc(time, layer), float64 vmipc(time, layer)
groups:
Check output file#
dephy_check = xr.open_dataset(dephy_filename)
dephy_check
<xarray.Dataset> Size: 3MB Dimensions: (time: 40, layer: 110) Coordinates: * time (time) datetime64[ns] 320B 2020-03-12T22:30:00 ... 2020-0... * layer (layer) float64 880B 1.0 2.0 3.0 4.0 ... 108.0 109.0 110.0 Data variables: (12/103) pa (time, layer) float64 35kB ... pe (time, layer) float64 35kB ... ps (time) float64 320B ... ts (time) float64 320B ... ustar (time) float64 320B ... z0 (time) float64 320B ... ... ... vmics (time, layer) float64 35kB ... vmips (time, layer) float64 35kB ... vmlcc (time, layer) float64 35kB ... vmlrc (time, layer) float64 35kB ... vmicc (time, layer) float64 35kB ... vmipc (time, layer) float64 35kB ... Attributes: (12/14) title: ModelE3 SCM results for COMBLE-MIP case: fixed stratifor... reference: https://github.com/ARM-Development/comble-mip authors: Ann Fridlind (ann.fridlind@nasa.gov), Florian Tornow (fl... source: /data/home/fridlind/modelE3//allsteps.allmergeSCM_COMBLE... version: 2024-05-21 23:04:13 format_version: DEPHY SCM format version 1.6 ... ... force_geo: 1 surfaceType: ocean surfaceForcing: ts lat: 74.5 deg N dp: see pressure variable np: 110