Example: convert AOSCM output to DEPHY format#
Code to read AOSCM output files and write to DEPHY format (NetCDF)
Contributed by Ann Fridlind from NASA/GISS, Michail Karalis from Stockholm University
Import libraries#
import xarray as xr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import csv
import os
import netCDF4
import datetime as dt
from netCDF4 import Dataset
Specify directory locations#
If on the ARM JupyterHub, it is recommended to create and specify a local directory that is outside of the COMBLE-MIP repository to upload raw model output files in your model’s format.
Processed domain-mean outputs are invited for commit to the GitHub repository on a user-specified branch under /comble-mip/output_scm/YOUR_MODEL_NAME/sandbox/YOUR_OUTPUT_FILE_NAME. These can be committed and removed at any time.
If you are able to make a run without ice, it is requested to append ‘noice’ to YOUR_OUTPUT_FILE_NAME, so that it can readily be automatically compared with the baseline and other liquid-only runs.
# specify input and output file names: versions of ModelE3 with and without ice
# Phys
my_input_suffix = 'COMBLE_scm_in.nc'
my_prog_suffix = 'progvar.nc'
my_diag_suffix = 'diagvar.nc'
my_diag2_suffix = 'diagvar2.nc'
my_merged_suffix = 'aoscm.nc'
# Phys without ice
# my_input_suffix = 'entppe_noice.nc'
exper = 'FixN_def_z0'
my_output_suffix = 'AOSCM_'+exper+'_alt.nc'
# specify local source directories (with subdirectories for spin up over ice and restart over water)
# my_input_dir = '/data/home/fridlind/modelE3/'
my_input_dir = '~/AOSCM_Karalis/'+exper+'/'
dsprog=xr.open_dataset(my_input_dir + my_prog_suffix,decode_times=False)
dsdiag=xr.open_dataset(my_input_dir + my_diag_suffix,decode_times=False)
dsdiag2=xr.open_dataset(my_input_dir + my_diag2_suffix,decode_times=False)
output = xr.merge([dsprog, dsdiag, dsdiag2])
output.to_netcdf(my_input_dir + my_merged_suffix)
# specify Github scratch directory where processed model output will be committed (automate later)
my_output_filename = 'aoscm.nc'
my_gitdir = '../../output_scm/AOSCM/sandbox/'
# my_gitdir = 'dephy/'
ERROR 1: PROJ: proj_create_from_database: Open of /opt/conda/share/proj failed
Read ModelE3 data#
Read single file containing all output data#
Note: ERROR 1: PROJ… message can be ignored here.
input_filename = my_input_dir + my_merged_suffix
modele_data = xr.open_dataset(input_filename,decode_times=False)
# check if the run contains ice variables
do_ice = bool(max(modele_data['ice_wat_path'].values)>0.)
print('do_ice = ',do_ice)
# full parameter list
modele_data
# scm_in
do_ice = True
<xarray.Dataset> Dimensions: (nlev: 137, nlevp1: 138, nlevs: 4, time: 161, ntiles: 9, norg: 4, ncextr: 137) Coordinates: * nlev (nlev) int32 1 2 3 4 5 6 7 ... 132 133 134 135 136 137 * nlevp1 (nlevp1) int32 1 2 3 4 5 6 ... 133 134 135 136 137 138 * nlevs (nlevs) int32 1 2 3 4 * time (time) float32 0.0 450.0 900.0 ... 7.155e+04 7.2e+04 * ntiles (ntiles) int32 -2147483647 -2147483647 ... -2147483647 * norg (norg) int32 -2147483647 -2147483647 ... -2147483647 * ncextr (ncextr) int32 -2147483647 -2147483647 ... -2147483647 Data variables: (12/223) pressure_f (time, nlev) float32 ... pressure_h (time, nlevp1) float32 ... height_f (time, nlev) float32 ... height_h (time, nlevp1) float32 ... relative_humidity (time, nlev) float32 ... t (time, nlev) float32 ... ... ... extra_col_27 (time, ncextr) float32 ... extra_col_28 (time, ncextr) float32 ... extra_col_29 (time, ncextr) float32 ... extra_col_30 (time, ncextr) float32 ... extra_col_31 (time, ncextr) float32 ... extra_col_32 (time, ncextr) float32 ... Attributes: title: SCM: 36r1 Sim: trref_wind modelID: 36r1 simulationID: trref_wind dataID: SCM_OUTPUT start_day: 20200412 start_hour: 79200
Interpolate to fixed pressure vertical grid#
for var in modele_data.variables:
if len(modele_data[var].data.shape) >1:
if modele_data[var].data.shape[1] == 137:
for tt in range(modele_data[var].shape[0]):
modele_data[var].data[tt,:] = np.interp(modele_data['pressure_f'].data[0,:], modele_data['pressure_f'].data[tt,:], modele_data[var].data[tt,:])
elif modele_data[var].data.shape[1] == 138:
for tt in range(modele_data[var].shape[0]):
modele_data[var].data[tt,:] = np.interp(modele_data['pressure_h'].data[0,:], modele_data['pressure_h'].data[tt,:], modele_data[var].data[tt,:])
Calculate and append additional variables#
additional_var_list = ['surface_pressure', 'surface_friction_velocity',
'obukhov_length', 'inversion_height',
'mass_mixing_ratio_of_cloud_liquid_water_in_air',
'mass_mixing_ratio_of_ice_water_in_air',
'mass_mixing_ratio_of_rain_water_in_air',
'tendency_of_air_potential_temperature_due_to_radiative_heating',
'tendency_of_air_potential_temperature_due_to_microphysics',
'tendency_of_air_potential_temperature_due_to_mixing',
'atmosphere_mass_content_of_rain_water',
'air_dry_density',
'surface_upwelling_longwave_flux',
'surface_sea_spray_number_flux',
'precipitation_flux_at_surface',
'precipitation_flux_of_ice_at_surface',
'vertical_flux_total_water',
'vertical_flux_water_vapor',
'zonal_momentum_flux',
'meridional_momentum_flux',
'water_vapor_mixing_ratio']
def additional_variables(var_name):
scm_in = xr.open_dataset(my_input_dir + my_input_suffix)
modele_data = xr.open_dataset(input_filename)
Rair = 287.1
Cp = 1003
kappa = 0.4
g = 9.8 #ms-2
T_ice = 250.16 #K
T_0 = 273.16 #K
N_tot = 50 #cm-3 over ocean
rho_liq = 1 #kgm-3
P_0 = 100000 #Pa
k = 2/7
## surface pressure
ps = scm_in.ps.data[0]*np.ones(len(modele_data.time.data))
inv_height = np.zeros(len(modele_data.time.data))
rain_wat_path = np.zeros(len(modele_data.time.data))
## dry air density
rho = modele_data.pressure_f.data/(Rair*modele_data.t.data)
## rain water path
for i in range(rain_wat_path.shape[0]):
layer = modele_data.height_h.data[i,:-1] - modele_data.height_h.data[i,1:]
rain_wat_path[i] = np.sum(modele_data.qr.data[i,:]*rho[i,:]*layer)
## liquid cloud fraction
liq_cl_frct = np.zeros(modele_data.cloud_fraction.data.shape)
for i in range(modele_data.cloud_fraction.data.shape[0]):
ice_cld = (modele_data.t.data[i,:] <= T_ice) & (modele_data.cloud_fraction.data[i,:] > 0)
mixed_cld = (modele_data.t.data[i,:] > T_ice) & (modele_data.t.data[i,:] < T_0) & (modele_data.cloud_fraction.data[i,:] > 0)
warm_cld = (modele_data.t.data[i,:] > T_0) & (modele_data.cloud_fraction.data[i,:] > 0)
liq_cl_frct[i,ice_cld] = 0
liq_cl_frct[i,mixed_cld] = ((modele_data.t.data[i,mixed_cld] - T_ice)/(T_0 - T_ice))**2
liq_cl_frct[i,warm_cld] = 1
# upwelling longwave
lwu = -(modele_data.sfc_lwrad.data - modele_data.sfc_lwrad_down.data)
# surf. sea-spray
sspray = np.zeros(modele_data.time.data.shape[0])
# prec. fluxes
prec = (modele_data.conv_rain.data + modele_data.stra_rain.data +
modele_data.conv_snow.data + modele_data.stra_snow.data )
snow = modele_data.conv_snow.data + modele_data.stra_snow.data
# turb. flux profiles
turb_tot_water = (modele_data.turb_flx_wv.data + modele_data.turb_flx_liq.data + modele_data.turb_flx_ice.data)
turb_tot_water_full = np.zeros(modele_data.t.data.shape)
turb_tot_wv_full = np.zeros(modele_data.t.data.shape)
for i in range(modele_data.time.data.shape[0]):
# print(np.flipud(modele_data.height_f.data[i,:]))
turb_tot_water_full[i,:] = -np.flipud(np.interp(np.flipud(modele_data.height_f.data[i,:]),
np.flipud(modele_data.height_h.data[i,:]),
np.flipud(turb_tot_water[i,:])))
turb_tot_wv_full[i,:] = -np.flipud(np.interp(np.flipud(modele_data.height_f.data[i,:]),
np.flipud(modele_data.height_h.data[i,:]),
np.flipud(modele_data.turb_flx_wv.data[i,:])))
#mixing ratios
w = modele_data.q.data/(1-modele_data.q.data)
w_l = modele_data.ql.data/(1-modele_data.ql.data)
w_i = modele_data.qi.data/(1-modele_data.qi.data)
w_r = modele_data.qr.data/(1-modele_data.qr.data)
w_sn = modele_data.qsn.data/(1-modele_data.qsn.data)
# momentum fluxes
wu_flux = np.zeros(modele_data.t.data.shape)
wv_flux = np.zeros(modele_data.t.data.shape)
for i in range(modele_data.time.data.shape[0]):
wu_flux[i,:] = -np.flipud(np.interp(np.flipud(modele_data.height_f.data[i,:]),
np.flipud(modele_data.height_h.data[i,:]),
np.flipud(modele_data.turb_flx_u.data[i,:])))
wv_flux[i,:] = -np.flipud(np.interp(np.flipud(modele_data.height_f.data[i,:]),
np.flipud(modele_data.height_h.data[i,:]),
np.flipud(modele_data.turb_flx_v.data[i,:])))
## optical depths - According to IFS c43 parameterizations
## not computed for this experiment
# r_e_liq = (3*modele_data.ql.data/(4*np.pi*rho_liq*0.8*N_tot))**(1/3)
# [c_0, c_1, c_2, c_3] = [326.3, 12.42, 0.197, 0.0012]
# r_e_ice = c_0 + c_1*T_c + c_2* T_c**2 + c_3*T_c**3
# [a_0, a_1] = [0.02672, 1.32] #μmm2g-1
# b_ext_liq = modele_data.ql.data*(a_0_liq + a_1_liq/r_e_liq) # LWC in gm-3
# [a_0, a_1] = [-9.45458*10**(-5), 2.52061] #μmm2g-1
# b_ext_ice = modele_data.qi.data*(a_0_ice + a_1_ice/r_e_ice)
# # same for rain and snow
# b_all = b_ext_liq + b_ext_ice
# delta = np.trapz(b_all,dp)
## temperature tendencies to theta tendencies
pres_tend = np.zeros(modele_data.pressure_f.data.shape)
for j in range(pres_tend.shape[1]):
pres_tend[:,j] = np.gradient(modele_data.pressure_f.data[:,j], modele_data.time.data)
theta_rad_dot = modele_data.extra_col_05.data*(P_0/modele_data.pressure_f.data)**(k) - k*modele_data.t.data*(P_0**k)*(modele_data.pressure_f.data**(-k-1))*pres_tend
theta_turb_dot = modele_data.extra_col_08.data*(P_0/modele_data.pressure_f.data)**(k) - k*modele_data.t.data*(P_0**k)*(modele_data.pressure_f.data**(-k-1))*pres_tend
theta_micro_dot = modele_data.extra_col_19.data*(P_0/modele_data.pressure_f.data)**(k) - k*modele_data.t.data*(P_0**k)*(modele_data.pressure_f.data**(-k-1))*pres_tend
## q tendencies
q_turb_dot = modele_data.extra_col_09.data
q_micro_dot = modele_data.extra_col_20.data
## inversion height
t = modele_data.t.data
t[modele_data.pressure_f.data/100<400] = np.nan
for i in range(inv_height.shape[0]):
t_grad = np.gradient(t[i,:],modele_data.height_f.data[i,:])
i_grad_max = np.nonzero(t_grad==np.nanmax(t_grad))
inv_height[i] = modele_data.height_f.data[i, i_grad_max[0]]
## u_star
stress = np.sqrt(modele_data.u_sfc_strss.data**2 + modele_data.v_sfc_strss.data**2)
u_star = np.sqrt(stress/rho[0,-1])
## L_star
L_star = (u_star**3)/((kappa*g/modele_data.pot_temperature.data[:,-1])*(modele_data.sfc_sen_flx.data/(Cp*rho[:,-1])))
if var_name == 'surface_pressure':
return ps
elif var_name == 'surface_friction_velocity':
return u_star
elif var_name == 'obukhov_length':
return L_star
elif var_name == 'inversion_height':
return inv_height
elif var_name == 'water_vapor_mixing_ratio':
return w
elif var_name == 'mass_mixing_ratio_of_cloud_liquid_water_in_air':
return w_l
elif var_name == 'mass_mixing_ratio_of_ice_water_in_air':
return w_i + w_sn
elif var_name == 'mass_mixing_ratio_of_rain_water_in_air':
return w_r
elif var_name == 'tendency_of_air_potential_temperature_due_to_radiative_heating':
return theta_rad_dot
elif var_name == 'tendency_of_air_potential_temperature_due_to_microphysics':
return theta_micro_dot
elif var_name == 'tendency_of_air_potential_temperature_due_to_mixing':
return theta_turb_dot
elif var_name == 'atmosphere_mass_content_of_rain_water':
return rain_wat_path
elif var_name == 'air_dry_density':
return rho
elif var_name == 'surface_upwelling_longwave_flux':
return lwu
elif var_name == 'surface_sea_spray_number_flux':
return sspray
elif var_name == 'precipitation_flux_at_surface':
return prec
elif var_name == 'vertical_flux_total_water':
return turb_tot_water_full
elif var_name == 'vertical_flux_water_vapor':
return turb_tot_wv_full
elif var_name == 'zonal_momentum_flux':
return wu_flux
elif var_name == 'meridional_momentum_flux':
return wv_flux
Prepare output file in DEPHY format#
Read requested variables list#
Variable description, naming, units, and dimensions.
# read list of requested variables
vars_mean_list = pd.read_excel('https://docs.google.com/spreadsheets/d/1Vl8jYGviet7EtXZuQiitrx4NSkV1x27aJAhxxjBb9zI/export?gid=1026157027&format=xlsx',
sheet_name='SCM')
pd.set_option('display.max_rows', None)
vars_mean_list
standard_name | variable_id | units | dimensions | comment (reported at end of each model physics time step, green=minimum, red=granularity enabling EMC2) | |
---|---|---|---|---|---|
0 | time | time | s | – | dimension, seconds since 2020-03-12 18:00:00 |
1 | pressure_layer | layer | 1 | – | dimension, pressure layer number from 1 at sur... |
2 | air_pressure | pa | Pa | time, layer | pressure at mid-level points (native model lev... |
3 | layer_top_pressure | pe | Pa | time, layer | dimension, pressure at layer top points (used ... |
4 | surface_pressure | ps | Pa | time | – |
5 | surface_temperature | ts | K | time | – |
6 | surface_friction_velocity | ustar | m s-1 | time | – |
7 | surface_roughness_length_for_momentum_in_air | z0 | m | time | – |
8 | surface_roughness_length_for_heat_in_air | z0h | m | time | – |
9 | surface_roughness_length_for_humidity_in_air | z0q | m | time | – |
10 | surface_upward_sensible_heat_flux | hfss | W m-2 | time | – |
11 | surface_upward_latent_heat_flux | hfls | W m-2 | time | – |
12 | obukhov_length | ol | m | time | – |
13 | pbl_height | pblh | m | time | PBL scheme layer thickness (if available) |
14 | inversion_height | zi | m | time | sharpest vertical gradient in air_potential_te... |
15 | atmosphere_mass_content_of_liquid_cloud_water | lwpc | kg m-2 | time | scene (all sky); cloud water path in all class... |
16 | atmosphere_mass_content_of_rain_water | lwpr | kg m-2 | time | scene (all sky); rain water path in all classe... |
17 | atmosphere_mass_content_of_ice_water | iwp | kg m-2 | time | scene (all sky); all ice-phase hydrometeors in... |
18 | area_fraction_cover_of_hydrometeors | cf | 1 | time | all hydrometeors and cloud types (e.g., all ph... |
19 | area_fraction_cover_of_liquid_cloud | cflc | 1 | time | liquid cloud cover without precipitation, incl... |
20 | area_fraction_cover_of_convective_hydrometeors | cfc | 1 | time | all hydrometeors, default breakdown into conve... |
21 | optical_depth | od | 1 | time | scene (all sky); mid-visible, all hydrometeors... |
22 | optical_depth_of_liquid_cloud | odlc | 1 | time | scene (all sky); mid-visible, cloud liquid onl... |
23 | precipitation_flux_at_surface | pr | kg m-2 s-1 | time | scene (all sky); all hydrometeors |
24 | precipitation_flux_of_ice_at_surface | pri | kg m-2 s-1 | time | scene (all sky); all ice phase hydrometeors |
25 | toa_outgoing_longwave_flux | rlut | W m-2 | time | – |
26 | surface_downwelling_longwave_flux | rlds | W m-2 | time | – |
27 | surface_upwelling_longwave_flux | rlus | W m-2 | time | – |
28 | surface_sea_spray_number_flux | ssaf | m-2 s-1 | time | when using prognostic aerosol; emission only (... |
29 | height | zf | m | time, layer | altitude of layer mid-level points above sea s... |
30 | eastward_wind | ua | m s-1 | time, layer | – |
31 | northward_wind | va | m s-1 | time, layer | – |
32 | air_dry_density | rhoa | kg m-3 | time, layer | per kg dry air |
33 | air_temperature | ta | K | time, layer | – |
34 | water_vapor_mixing_ratio | qv | kg kg-1 | time, layer | – |
35 | relative_humidity | hur | 1 | time, layer | relative to liquid |
36 | relative_humidity_over_ice | huri | 1 | time, layer | relative to ice |
37 | air_potential_temperature | theta | K | time, layer | – |
38 | mass_mixing_ratio_of_cloud_liquid_water_in_air | qlc | kg kg-1 | time, layer | scene (all sky) per kg dry air; cloud water pa... |
39 | mass_mixing_ratio_of_rain_water_in_air | qlr | kg kg-1 | time, layer | rain water path only in all classes (e.g., con... |
40 | mass_mixing_ratio_of_ice_water_in_air | qi | kg kg-1 | time, layer | all ice water path in all classes (e.g., conve... |
41 | area_fraction_of_hydrometeors | fh | 1 | time, layer | all hydrometeors and cloud types (e.g., all ph... |
42 | area_fraction_of_liquid_cloud | flc | 1 | time, layer | liquid cloud cover without precipitation, incl... |
43 | area_fraction_of_convective_hydrometeors | fc | 1 | time, layer | all hydrometeors, default breakdown into conve... |
44 | precipitation_flux_in_air | prf | kg m-2 s-1 | time, layer | scene (all sky); all hydrometeors |
45 | precipitation_flux_in_air_in_ice_phase | prfi | kg m-2 s-1 | time, layer | scene (all sky); all ice phase hydrometeors |
46 | specific_turbulent_kinetic_energy | tke | m2 s-2 | time, layer | – |
47 | dissipation_rate_of_turbulent_kinetic_energy | eps | m2 s-3 | time, layer | report as negative |
48 | zonal_momentum_flux | uw | m2 s-2 | time, layer | parameterized turbulent flux |
49 | meridional_momentum_flux | vw | m2 s-2 | time, layer | parameterized turbulent flux |
50 | variance_of_upward_air_velocity | w2 | m2 s-2 | time, layer | parameterized turbulent flux |
51 | vertical_flux_potential_temperature | wth | K m s-1 | time, layer | parameterized turbulent flux |
52 | vertical_flux_liquid_ice_water_potential_tempe... | vf_thli | K m s-1 | time, layer | parameterized turbulent flux; include sediment... |
53 | vertical_flux_water_vapor | wqv | kg kg-1 m s-1 | time, layer | parameterized turbulent flux |
54 | vertical_flux_total_water | vf_qt | kg kg-1 m s-1 | time, layer | parameterized turbulent flux; vapor+all liquid... |
55 | convection_updraft_mass_flux | cmfu | kg m-2 s-1 | time, layer | – |
56 | convection_downdraft_mass_flux | cmfd | kg m-2 s-1 | time, layer | – |
57 | downwelling_longwave_flux_in_air | rld | W m-2 | time, layer | – |
58 | upwelling_longwave_flux_in_air | rlu | W m-2 | time, layer | – |
59 | tendency_of_air_potential_temperature_due_to_r... | dth_rad | K s-1 | time, layer | scene (all sky) |
60 | tendency_of_air_potential_temperature_due_to_m... | dth_micro | K s-1 | time, layer | including net condensation and precipitation i... |
61 | tendency_of_air_potential_temperature_due_to_m... | dth_turb | K s-1 | time, layer | including surface fluxes |
62 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_micro | s-1 | time, layer | including net condensation and precipitation i... |
63 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_turb | s-1 | time, layer | including surface fluxes |
64 | number_of_total_aerosol_mode1 | na1 | kg-1 | time, layer | when using prognostic aerosol; scene (all sky)... |
65 | number_of_total_aerosol_mode2 | na2 | kg-1 | time, layer | accumulation mode |
66 | number_of_total_aerosol_mode3 | na3 | kg-1 | time, layer | sea spray mode |
67 | tendency_of_aerosol_number_due_to_warm_microph... | dna_micro_warm | kg-1 s-1 | time, layer | activated and unactivated aerosol (sum over al... |
68 | tendency_of_aerosol_number_due_to_cold_microph... | dna_micro_cold | kg-1 s-1 | time, layer | activated and unactivated aerosol (sum over al... |
69 | tendency_of_aerosol_number_due_to_mixing | dna_turb | kg-1 s-1 | time, layer | activated and unactivated aerosol (sum over al... |
70 | tendency_of_ice_number_due_to_heterogeneous_fr... | dni_het | kg-1 s-1 | time, layer | sum of primary ice nucleation due to activatio... |
71 | tendency_of_ice_number_due_to_secondary_ice_pr... | dni_sip | kg-1 s-1 | time, layer | sum of secondary ice formation processes (e.g.... |
72 | tendency_of_ice_number_due_to_homogeneous_free... | dni_hom | kg-1 s-1 | time, layer | ice nucleation source due to homogoeneous free... |
73 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcs | kg kg-1 | time, layer | scene (all sky) per kg dry air; default breakd... |
74 | mass_mixing_ratio_of_rain_water_in_air_stratiform | qlrs | kg kg-1 | time, layer | – |
75 | mass_mixing_ratio_of_ice_cloud_in_air_stratiform | qics | kg kg-1 | time, layer | default breakdown as for liquid; if other ice-... |
76 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qips | kg kg-1 | time, layer | – |
77 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcc | kg kg-1 | time, layer | – |
78 | mass_mixing_ratio_of_rain_water_in_air_convective | qlrc | kg kg-1 | time, layer | – |
79 | mass_mixing_ratio_of_ice_cloud_in_air_convective | qicc | kg kg-1 | time, layer | – |
80 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qipc | kg kg-1 | time, layer | – |
81 | number_of_liquid_cloud_droplets_in_air_stratiform | nlcs | kg-1 | time, layer | scene (all sky) per kg dry air; if other categ... |
82 | number_of_rain_drops_in_air_stratiform | nlrs | kg-1 | time, layer | – |
83 | number_of_ice_cloud_crystals_in_air_stratiform | nics | kg-1 | time, layer | if other ice-phase categories are used, provid... |
84 | number_of_ice_precipitation_crystals_in_air_st... | nips | kg-1 | time, layer | – |
85 | effective_radius_of_liquid_cloud_droplets_conv... | relcc | m | time, layer | EMC2 uses effective radius for any hydrometeor... |
86 | effective_radius_of_rain_convective | relrc | m | time, layer | – |
87 | effective_radius_of_ice_cloud_convective | reicc | m | time, layer | – |
88 | effective_radius_of_ice_precipitation_convective | reipc | m | time, layer | – |
89 | area_fraction_of_liquid_cloud_stratiform | flcs | 1 | time, layer | EMC2 uses area fraction profiles for all hydro... |
90 | area_fraction_of_rain_stratiform | flrs | 1 | time, layer | – |
91 | area_fraction_of_ice_cloud_stratiform | fics | 1 | time, layer | if other ice categories are used, provide addi... |
92 | area_fraction_of_ice_precipitation_stratiform | fips | 1 | time, layer | – |
93 | area_fraction_of_liquid_cloud_convective | flcc | 1 | time, layer | – |
94 | area_fraction_of_rain_convective | flrc | 1 | time, layer | – |
95 | area_fraction_of_ice_cloud_convective | ficc | 1 | time, layer | – |
96 | area_fraction_of_ice_precipitation_convective | fipc | 1 | time, layer | – |
97 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcs | m s-1 | time, layer | EMC2 uses mass-weighted fall-speed profiles fo... |
98 | mass_weighted_fall_speed_of_rain_stratiform | vmlrs | m s-1 | time, layer | – |
99 | mass_weighted_fall_speed_of_ice_cloud_stratiform | vmics | m s-1 | time, layer | if other ice-phase categories are used, provid... |
100 | mass_weighted_fall_speed_of_ice_precipitation_... | vmips | m s-1 | time, layer | – |
101 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcc | m s-1 | time, layer | – |
102 | mass_weighted_fall_speed_of_rain_convective | vmlrc | m s-1 | time, layer | – |
103 | mass_weighted_fall_speed_of_cloud_ice_crystals... | vmicc | m s-1 | time, layer | – |
104 | mass_weighted_fall_speed_of_ice_precipitation_... | vmipc | m s-1 | time, layer | – |
Match ModelE3 variables to requested outputs#
Expand the table to include columns that indicate ModelE3 model variable names and any conversion factor.
# drop comments
vars_mean_list = vars_mean_list.drop(columns='comment (reported at end of each model physics time step, green=minimum, red=granularity enabling EMC2)')
# add columns to contain model output name and units conversion factors
vars_mean_list = vars_mean_list.assign(model_name='missing data',conv_factor=1.0)
# match to ModelE3 variable names and specify conversion factors
for index in vars_mean_list.index:
standard_name = vars_mean_list.standard_name.iat[index]
if standard_name=='surface_temperature': #done
vars_mean_list.model_name.iat[index] = 't_skin'
if standard_name=='surface_roughness_length_for_momentum_in_air': #done
vars_mean_list.model_name.iat[index] = 'rough_len_mom'
if standard_name=='surface_roughness_length_for_heat_in_air': #done
vars_mean_list.model_name.iat[index] = 'rough_len_heat'
if standard_name=='surface_roughness_length_for_humidity_in_air': #to_do
vars_mean_list.model_name.iat[index] = 'rough_len_heat'
if standard_name=='surface_upward_sensible_heat_flux': #done
vars_mean_list.model_name.iat[index] = 'sfc_sen_flx'
vars_mean_list.conv_factor.iat[index] = -1.
if standard_name=='surface_upward_latent_heat_flux': #done
vars_mean_list.model_name.iat[index] = 'sfc_lat_flx'
vars_mean_list.conv_factor.iat[index] = -1.
if standard_name=='pbl_height': #done
vars_mean_list.model_name.iat[index] = 'pbl_height'
if standard_name=='atmosphere_mass_content_of_liquid_cloud_water': #done
vars_mean_list.model_name.iat[index] = 'liq_wat_path'
vars_mean_list.conv_factor.iat[index] = 1
if do_ice:
if standard_name=='atmosphere_mass_content_of_ice_water': #done
vars_mean_list.model_name.iat[index] = 'ice_wat_path'
vars_mean_list.conv_factor.iat[index] = 1
if standard_name=='area_fraction_cover_of_hydrometeors': ##done
vars_mean_list.model_name.iat[index] = 'total_cloud'
if standard_name=='toa_outgoing_longwave_flux': #done
vars_mean_list.model_name.iat[index] = 'top_lwrad'
vars_mean_list.conv_factor.iat[index] = -1
if standard_name=='surface_downwelling_longwave_flux': #done
vars_mean_list.model_name.iat[index] = 'sfc_lwrad_down'
vars_mean_list.conv_factor.iat[index] = 1
if standard_name=='height': #done
vars_mean_list.model_name.iat[index] = 'height_f'
if standard_name=='eastward_wind': #done
vars_mean_list.model_name.iat[index] = 'u'
if standard_name=='northward_wind': #done
vars_mean_list.model_name.iat[index] = 'v'
if standard_name=='air_temperature': #done
vars_mean_list.model_name.iat[index] = 't'
if standard_name=='relative_humidity': #done
vars_mean_list.model_name.iat[index] = 'relative_humidity'
vars_mean_list.conv_factor.iat[index] = 1
if standard_name=='air_potential_temperature': #done
vars_mean_list.model_name.iat[index] = 'pot_temperature'
vars_mean_list[2:] # echo variables (first two rows are dimensions)
standard_name | variable_id | units | dimensions | model_name | conv_factor | |
---|---|---|---|---|---|---|
2 | air_pressure | pa | Pa | time, layer | missing data | 1.0 |
3 | layer_top_pressure | pe | Pa | time, layer | missing data | 1.0 |
4 | surface_pressure | ps | Pa | time | missing data | 1.0 |
5 | surface_temperature | ts | K | time | t_skin | 1.0 |
6 | surface_friction_velocity | ustar | m s-1 | time | missing data | 1.0 |
7 | surface_roughness_length_for_momentum_in_air | z0 | m | time | rough_len_mom | 1.0 |
8 | surface_roughness_length_for_heat_in_air | z0h | m | time | rough_len_heat | 1.0 |
9 | surface_roughness_length_for_humidity_in_air | z0q | m | time | rough_len_heat | 1.0 |
10 | surface_upward_sensible_heat_flux | hfss | W m-2 | time | sfc_sen_flx | -1.0 |
11 | surface_upward_latent_heat_flux | hfls | W m-2 | time | sfc_lat_flx | -1.0 |
12 | obukhov_length | ol | m | time | missing data | 1.0 |
13 | pbl_height | pblh | m | time | pbl_height | 1.0 |
14 | inversion_height | zi | m | time | missing data | 1.0 |
15 | atmosphere_mass_content_of_liquid_cloud_water | lwpc | kg m-2 | time | liq_wat_path | 1.0 |
16 | atmosphere_mass_content_of_rain_water | lwpr | kg m-2 | time | missing data | 1.0 |
17 | atmosphere_mass_content_of_ice_water | iwp | kg m-2 | time | ice_wat_path | 1.0 |
18 | area_fraction_cover_of_hydrometeors | cf | 1 | time | total_cloud | 1.0 |
19 | area_fraction_cover_of_liquid_cloud | cflc | 1 | time | missing data | 1.0 |
20 | area_fraction_cover_of_convective_hydrometeors | cfc | 1 | time | missing data | 1.0 |
21 | optical_depth | od | 1 | time | missing data | 1.0 |
22 | optical_depth_of_liquid_cloud | odlc | 1 | time | missing data | 1.0 |
23 | precipitation_flux_at_surface | pr | kg m-2 s-1 | time | missing data | 1.0 |
24 | precipitation_flux_of_ice_at_surface | pri | kg m-2 s-1 | time | missing data | 1.0 |
25 | toa_outgoing_longwave_flux | rlut | W m-2 | time | top_lwrad | -1.0 |
26 | surface_downwelling_longwave_flux | rlds | W m-2 | time | sfc_lwrad_down | 1.0 |
27 | surface_upwelling_longwave_flux | rlus | W m-2 | time | missing data | 1.0 |
28 | surface_sea_spray_number_flux | ssaf | m-2 s-1 | time | missing data | 1.0 |
29 | height | zf | m | time, layer | height_f | 1.0 |
30 | eastward_wind | ua | m s-1 | time, layer | u | 1.0 |
31 | northward_wind | va | m s-1 | time, layer | v | 1.0 |
32 | air_dry_density | rhoa | kg m-3 | time, layer | missing data | 1.0 |
33 | air_temperature | ta | K | time, layer | t | 1.0 |
34 | water_vapor_mixing_ratio | qv | kg kg-1 | time, layer | missing data | 1.0 |
35 | relative_humidity | hur | 1 | time, layer | relative_humidity | 1.0 |
36 | relative_humidity_over_ice | huri | 1 | time, layer | missing data | 1.0 |
37 | air_potential_temperature | theta | K | time, layer | pot_temperature | 1.0 |
38 | mass_mixing_ratio_of_cloud_liquid_water_in_air | qlc | kg kg-1 | time, layer | missing data | 1.0 |
39 | mass_mixing_ratio_of_rain_water_in_air | qlr | kg kg-1 | time, layer | missing data | 1.0 |
40 | mass_mixing_ratio_of_ice_water_in_air | qi | kg kg-1 | time, layer | missing data | 1.0 |
41 | area_fraction_of_hydrometeors | fh | 1 | time, layer | missing data | 1.0 |
42 | area_fraction_of_liquid_cloud | flc | 1 | time, layer | missing data | 1.0 |
43 | area_fraction_of_convective_hydrometeors | fc | 1 | time, layer | missing data | 1.0 |
44 | precipitation_flux_in_air | prf | kg m-2 s-1 | time, layer | missing data | 1.0 |
45 | precipitation_flux_in_air_in_ice_phase | prfi | kg m-2 s-1 | time, layer | missing data | 1.0 |
46 | specific_turbulent_kinetic_energy | tke | m2 s-2 | time, layer | missing data | 1.0 |
47 | dissipation_rate_of_turbulent_kinetic_energy | eps | m2 s-3 | time, layer | missing data | 1.0 |
48 | zonal_momentum_flux | uw | m2 s-2 | time, layer | missing data | 1.0 |
49 | meridional_momentum_flux | vw | m2 s-2 | time, layer | missing data | 1.0 |
50 | variance_of_upward_air_velocity | w2 | m2 s-2 | time, layer | missing data | 1.0 |
51 | vertical_flux_potential_temperature | wth | K m s-1 | time, layer | missing data | 1.0 |
52 | vertical_flux_liquid_ice_water_potential_tempe... | vf_thli | K m s-1 | time, layer | missing data | 1.0 |
53 | vertical_flux_water_vapor | wqv | kg kg-1 m s-1 | time, layer | missing data | 1.0 |
54 | vertical_flux_total_water | vf_qt | kg kg-1 m s-1 | time, layer | missing data | 1.0 |
55 | convection_updraft_mass_flux | cmfu | kg m-2 s-1 | time, layer | missing data | 1.0 |
56 | convection_downdraft_mass_flux | cmfd | kg m-2 s-1 | time, layer | missing data | 1.0 |
57 | downwelling_longwave_flux_in_air | rld | W m-2 | time, layer | missing data | 1.0 |
58 | upwelling_longwave_flux_in_air | rlu | W m-2 | time, layer | missing data | 1.0 |
59 | tendency_of_air_potential_temperature_due_to_r... | dth_rad | K s-1 | time, layer | missing data | 1.0 |
60 | tendency_of_air_potential_temperature_due_to_m... | dth_micro | K s-1 | time, layer | missing data | 1.0 |
61 | tendency_of_air_potential_temperature_due_to_m... | dth_turb | K s-1 | time, layer | missing data | 1.0 |
62 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_micro | s-1 | time, layer | missing data | 1.0 |
63 | tendency_of_water_vapor_mixing_ratio_due_to_mi... | dq_turb | s-1 | time, layer | missing data | 1.0 |
64 | number_of_total_aerosol_mode1 | na1 | kg-1 | time, layer | missing data | 1.0 |
65 | number_of_total_aerosol_mode2 | na2 | kg-1 | time, layer | missing data | 1.0 |
66 | number_of_total_aerosol_mode3 | na3 | kg-1 | time, layer | missing data | 1.0 |
67 | tendency_of_aerosol_number_due_to_warm_microph... | dna_micro_warm | kg-1 s-1 | time, layer | missing data | 1.0 |
68 | tendency_of_aerosol_number_due_to_cold_microph... | dna_micro_cold | kg-1 s-1 | time, layer | missing data | 1.0 |
69 | tendency_of_aerosol_number_due_to_mixing | dna_turb | kg-1 s-1 | time, layer | missing data | 1.0 |
70 | tendency_of_ice_number_due_to_heterogeneous_fr... | dni_het | kg-1 s-1 | time, layer | missing data | 1.0 |
71 | tendency_of_ice_number_due_to_secondary_ice_pr... | dni_sip | kg-1 s-1 | time, layer | missing data | 1.0 |
72 | tendency_of_ice_number_due_to_homogeneous_free... | dni_hom | kg-1 s-1 | time, layer | missing data | 1.0 |
73 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcs | kg kg-1 | time, layer | missing data | 1.0 |
74 | mass_mixing_ratio_of_rain_water_in_air_stratiform | qlrs | kg kg-1 | time, layer | missing data | 1.0 |
75 | mass_mixing_ratio_of_ice_cloud_in_air_stratiform | qics | kg kg-1 | time, layer | missing data | 1.0 |
76 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qips | kg kg-1 | time, layer | missing data | 1.0 |
77 | mass_mixing_ratio_of_liquid_cloud_water_in_air... | qlcc | kg kg-1 | time, layer | missing data | 1.0 |
78 | mass_mixing_ratio_of_rain_water_in_air_convective | qlrc | kg kg-1 | time, layer | missing data | 1.0 |
79 | mass_mixing_ratio_of_ice_cloud_in_air_convective | qicc | kg kg-1 | time, layer | missing data | 1.0 |
80 | mass_mixing_ratio_of_ice_precipitation_in_air_... | qipc | kg kg-1 | time, layer | missing data | 1.0 |
81 | number_of_liquid_cloud_droplets_in_air_stratiform | nlcs | kg-1 | time, layer | missing data | 1.0 |
82 | number_of_rain_drops_in_air_stratiform | nlrs | kg-1 | time, layer | missing data | 1.0 |
83 | number_of_ice_cloud_crystals_in_air_stratiform | nics | kg-1 | time, layer | missing data | 1.0 |
84 | number_of_ice_precipitation_crystals_in_air_st... | nips | kg-1 | time, layer | missing data | 1.0 |
85 | effective_radius_of_liquid_cloud_droplets_conv... | relcc | m | time, layer | missing data | 1.0 |
86 | effective_radius_of_rain_convective | relrc | m | time, layer | missing data | 1.0 |
87 | effective_radius_of_ice_cloud_convective | reicc | m | time, layer | missing data | 1.0 |
88 | effective_radius_of_ice_precipitation_convective | reipc | m | time, layer | missing data | 1.0 |
89 | area_fraction_of_liquid_cloud_stratiform | flcs | 1 | time, layer | missing data | 1.0 |
90 | area_fraction_of_rain_stratiform | flrs | 1 | time, layer | missing data | 1.0 |
91 | area_fraction_of_ice_cloud_stratiform | fics | 1 | time, layer | missing data | 1.0 |
92 | area_fraction_of_ice_precipitation_stratiform | fips | 1 | time, layer | missing data | 1.0 |
93 | area_fraction_of_liquid_cloud_convective | flcc | 1 | time, layer | missing data | 1.0 |
94 | area_fraction_of_rain_convective | flrc | 1 | time, layer | missing data | 1.0 |
95 | area_fraction_of_ice_cloud_convective | ficc | 1 | time, layer | missing data | 1.0 |
96 | area_fraction_of_ice_precipitation_convective | fipc | 1 | time, layer | missing data | 1.0 |
97 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcs | m s-1 | time, layer | missing data | 1.0 |
98 | mass_weighted_fall_speed_of_rain_stratiform | vmlrs | m s-1 | time, layer | missing data | 1.0 |
99 | mass_weighted_fall_speed_of_ice_cloud_stratiform | vmics | m s-1 | time, layer | missing data | 1.0 |
100 | mass_weighted_fall_speed_of_ice_precipitation_... | vmips | m s-1 | time, layer | missing data | 1.0 |
101 | mass_weighted_fall_speed_of_liquid_cloud_water... | vmlcc | m s-1 | time, layer | missing data | 1.0 |
102 | mass_weighted_fall_speed_of_rain_convective | vmlrc | m s-1 | time, layer | missing data | 1.0 |
103 | mass_weighted_fall_speed_of_cloud_ice_crystals... | vmicc | m s-1 | time, layer | missing data | 1.0 |
104 | mass_weighted_fall_speed_of_ice_precipitation_... | vmipc | m s-1 | time, layer | missing data | 1.0 |
Create DEPHY output file#
Write a single file to contain all domain-mean scalar and profile outputs. This code expects the write directory to be pre-existing (already created by the user). In the case that this output will be committed to the comble-mip GitHub repository, see above “Specify directory locations”.
# create DEPHY output file
dephy_filename = my_gitdir + my_output_suffix
if os.path.exists(dephy_filename):
os.remove(dephy_filename)
print('The file ' + dephy_filename + ' has been deleted successfully')
dephy_file = Dataset(dephy_filename,mode='w',format='NETCDF3_CLASSIC')
start_date = '2020-03-12T22:00:00Z'
# create global attributes
dephy_file.title='AOSCM results for COMBLE-MIP case: fixed stratiform Nd'
dephy_file.reference='https://github.com/ARM-Development/comble-mip'
dephy_file.authors='Michail Karalis (michail.karalis@misu.su.se), Gunilla Svensson (gunilla@misu.su.se)'
dephy_file.source=input_filename
dephy_file.version=dt.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
dephy_file.format_version='DEPHY SCM format version 1.6'
dephy_file.script='convert_AOSCM_output_to_dephy_format.ipynb'
dephy_file.startDate=start_date
dephy_file.force_geo=1
dephy_file.surfaceType='ocean'
dephy_file.surfaceForcing='ts'
dephy_file.lat='74.5 deg N'
dephy_file.dp='see pressure variable'
dephy_file.np=modele_data.sizes['nlev']
dephy_file.alt='Nd = 50 cm-3 over the ocean and diagnostic Ni'
# create dimensions
nt = modele_data.dims['time']
time = dephy_file.createDimension('time', nt)
time = dephy_file.createVariable('time', np.float64, ('time',))
time.units = 'seconds since ' + dephy_file.startDate
time.long_name = 'time'
# find time step and build time in seconds
# time1 = dt.datetime.strptime(str(modele_data['time'].data[0]),'%Y-%m-%d %H:%M:%S')
# time2 = dt.datetime.strptime(str(modele_data['time'].data[1]),'%Y-%m-%d %H:%M:%S')
# delta_t = (time2-time1).total_seconds()
delta_t = modele_data['time'].data[1]
# time[:] = (np.arange(nt)+1.)*delta_t
time[:] = modele_data['time'].data
nl = modele_data.dims['nlev']
# pa = dephy_file.createDimension('pressure', nl)
# pa = dephy_file.createVariable('pressure', np.float64, ('pressure',))
# pa.units = 'Pa'
# pa.long_name = 'pressure'
# pa[:] = modele_data['pressure_f'].data[0,:]*100.
lvl = dephy_file.createDimension('pa', nl)
pa = dephy_file.createVariable('pa', np.float64, ('pa',))
pa.units = 'Pa'
pa.long_name = 'pressure'
pa[:] = modele_data['pressure_f'].data[0,:]
# create and fill variables
for index in vars_mean_list.index[3:]:
std_name = vars_mean_list.standard_name.iat[index]
print(std_name)
# print(std_name) # debug
var_name = vars_mean_list.variable_id.iat[index]
mod_name = vars_mean_list.model_name.iat[index]
c_factor = vars_mean_list.conv_factor.iat[index]
if vars_mean_list.dimensions.iat[index]=='time':
new_sca = dephy_file.createVariable(var_name, np.float64, ('time'))
new_sca.units = vars_mean_list.units.iat[index]
new_sca.long_name = std_name
if vars_mean_list.model_name.iat[index]!='missing data':
new_sca[:] = modele_data[mod_name].data*c_factor
elif np.any(np.array(additional_var_list) == std_name) :
new_sca[:] = additional_variables(std_name)
if vars_mean_list.dimensions.iat[index]=='time, layer':
new_snd = dephy_file.createVariable(var_name, np.float64, ('time','pa'))
new_snd.units = vars_mean_list.units.iat[index]
new_snd.long_name = std_name
if vars_mean_list.model_name.iat[index]!='missing data':
new_snd[:] = modele_data[mod_name].data*c_factor
elif np.any(np.array(additional_var_list) == std_name) :
new_snd[:] = additional_variables(std_name)
dephy_file.close()
The file ../../output_scm/AOSCM/sandbox/AOSCM_FixN_def_z0_alt.nc has been deleted successfully
layer_top_pressure
surface_pressure
surface_temperature
surface_friction_velocity
surface_roughness_length_for_momentum_in_air
surface_roughness_length_for_heat_in_air
surface_roughness_length_for_humidity_in_air
surface_upward_sensible_heat_flux
surface_upward_latent_heat_flux
obukhov_length
pbl_height
inversion_height
atmosphere_mass_content_of_liquid_cloud_water
atmosphere_mass_content_of_rain_water
atmosphere_mass_content_of_ice_water
area_fraction_cover_of_hydrometeors
area_fraction_cover_of_liquid_cloud
area_fraction_cover_of_convective_hydrometeors
optical_depth
optical_depth_of_liquid_cloud
precipitation_flux_at_surface
precipitation_flux_of_ice_at_surface
toa_outgoing_longwave_flux
surface_downwelling_longwave_flux
surface_upwelling_longwave_flux
surface_sea_spray_number_flux
height
eastward_wind
northward_wind
air_dry_density
air_temperature
water_vapor_mixing_ratio
relative_humidity
relative_humidity_over_ice
air_potential_temperature
mass_mixing_ratio_of_cloud_liquid_water_in_air
mass_mixing_ratio_of_rain_water_in_air
mass_mixing_ratio_of_ice_water_in_air
area_fraction_of_hydrometeors
area_fraction_of_liquid_cloud
area_fraction_of_convective_hydrometeors
precipitation_flux_in_air
precipitation_flux_in_air_in_ice_phase
specific_turbulent_kinetic_energy
dissipation_rate_of_turbulent_kinetic_energy
zonal_momentum_flux
meridional_momentum_flux
variance_of_upward_air_velocity
vertical_flux_potential_temperature
vertical_flux_liquid_ice_water_potential_temperature
vertical_flux_water_vapor
vertical_flux_total_water
convection_updraft_mass_flux
convection_downdraft_mass_flux
downwelling_longwave_flux_in_air
upwelling_longwave_flux_in_air
tendency_of_air_potential_temperature_due_to_radiative_heating
tendency_of_air_potential_temperature_due_to_microphysics
tendency_of_air_potential_temperature_due_to_mixing
tendency_of_water_vapor_mixing_ratio_due_to_microphysics
tendency_of_water_vapor_mixing_ratio_due_to_mixing
number_of_total_aerosol_mode1
number_of_total_aerosol_mode2
number_of_total_aerosol_mode3
tendency_of_aerosol_number_due_to_warm_microphysics
tendency_of_aerosol_number_due_to_cold_microphysics
tendency_of_aerosol_number_due_to_mixing
tendency_of_ice_number_due_to_heterogeneous_freezing
tendency_of_ice_number_due_to_secondary_ice_production
tendency_of_ice_number_due_to_homogeneous_freezing
mass_mixing_ratio_of_liquid_cloud_water_in_air_stratiform
mass_mixing_ratio_of_rain_water_in_air_stratiform
mass_mixing_ratio_of_ice_cloud_in_air_stratiform
mass_mixing_ratio_of_ice_precipitation_in_air_stratiform
mass_mixing_ratio_of_liquid_cloud_water_in_air_convective
mass_mixing_ratio_of_rain_water_in_air_convective
mass_mixing_ratio_of_ice_cloud_in_air_convective
mass_mixing_ratio_of_ice_precipitation_in_air_convective
number_of_liquid_cloud_droplets_in_air_stratiform
number_of_rain_drops_in_air_stratiform
number_of_ice_cloud_crystals_in_air_stratiform
number_of_ice_precipitation_crystals_in_air_stratiform
effective_radius_of_liquid_cloud_droplets_convective
effective_radius_of_rain_convective
effective_radius_of_ice_cloud_convective
effective_radius_of_ice_precipitation_convective
area_fraction_of_liquid_cloud_stratiform
area_fraction_of_rain_stratiform
area_fraction_of_ice_cloud_stratiform
area_fraction_of_ice_precipitation_stratiform
area_fraction_of_liquid_cloud_convective
area_fraction_of_rain_convective
area_fraction_of_ice_cloud_convective
area_fraction_of_ice_precipitation_convective
mass_weighted_fall_speed_of_liquid_cloud_water_stratiform
mass_weighted_fall_speed_of_rain_stratiform
mass_weighted_fall_speed_of_ice_cloud_stratiform
mass_weighted_fall_speed_of_ice_precipitation_stratiform
mass_weighted_fall_speed_of_liquid_cloud_water_convective
mass_weighted_fall_speed_of_rain_convective
mass_weighted_fall_speed_of_cloud_ice_crystals_convective
mass_weighted_fall_speed_of_ice_precipitation_convective
Check output file#
dephy_check = xr.open_dataset(dephy_filename)
dephy_check
<xarray.Dataset> Dimensions: (time: 161, pa: 137) Coordinates: * time (time) datetime64[ns] 2020-03-12T22:00:00 ... 2020-03-13T... * pa (pa) float64 1.0 2.551 3.884 ... 9.918e+04 9.943e+04 Data variables: (12/102) pe (time, pa) float64 ... ps (time) float64 ... ts (time) float64 ... ustar (time) float64 ... z0 (time) float64 ... z0h (time) float64 ... ... ... vmics (time, pa) float64 ... vmips (time, pa) float64 ... vmlcc (time, pa) float64 ... vmlrc (time, pa) float64 ... vmicc (time, pa) float64 ... vmipc (time, pa) float64 ... Attributes: (12/15) title: AOSCM results for COMBLE-MIP case: fixed stratiform Nd reference: https://github.com/ARM-Development/comble-mip authors: Michail Karalis (michail.karalis@misu.su.se), Gunilla Sv... source: ~/AOSCM_Karalis/FixN_def_z0/aoscm.nc version: 2024-04-15 10:33:58 format_version: DEPHY SCM format version 1.6 ... ... surfaceType: ocean surfaceForcing: ts lat: 74.5 deg N dp: see pressure variable np: 137 alt: Nd = 50 cm-3 over the ocean and diagnostic Ni